<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-01-15 mer. 16:22 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Active Damping applied on the Simscape Model</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/> <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/> <script type="text/javascript" src="../js/jquery.min.js"></script> <script type="text/javascript" src="../js/bootstrap.min.js"></script> <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script> <script type="text/javascript" src="../js/readtheorg.js"></script> <script type="text/javascript"> /* @licstart The following is the entire license notice for the JavaScript code in this tag. Copyright (C) 2012-2020 Free Software Foundation, Inc. The JavaScript code in this tag is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GNU GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The code is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details. As additional permission under GNU GPL version 3 section 7, you may distribute non-source (e.g., minimized or compacted) forms of that code without the copy of the GNU GPL normally required by section 4, provided you include this license notice and a URL through which recipients can access the Corresponding Source. @licend The above is the entire license notice for the JavaScript code in this tag. */ <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> </script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ displayAlign: "center", displayIndent: "0em", "HTML-CSS": { scale: 100, linebreaks: { automatic: "false" }, webFont: "TeX" }, SVG: {scale: 100, linebreaks: { automatic: "false" }, font: "TeX"}, NativeMML: {scale: 100}, TeX: { equationNumbers: {autoNumber: "AMS"}, MultLineWidth: "85%", TagSide: "right", TagIndent: ".8em", Macros: { bm: ["{\\boldsymbol #1}",1], } } }); </script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="../index.html"> UP </a> | <a accesskey="H" href="../index.html"> HOME </a> </div><div id="content"> <h1 class="title">Active Damping applied on the Simscape Model</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org43bc922">1. Undamped System</a> <ul> <li><a href="#org9a8111b">1.1. Identification of the dynamics for Active Damping</a> <ul> <li><a href="#org813e9d0">1.1.1. Initialize the Simulation</a></li> <li><a href="#org85a96c0">1.1.2. Identification</a></li> <li><a href="#orgc478ad1">1.1.3. Obtained Plants for Active Damping</a></li> </ul> </li> <li><a href="#org22150e6">1.2. Tomography Experiment</a> <ul> <li><a href="#org931bbc3">1.2.1. Simulation</a></li> <li><a href="#org97e15e5">1.2.2. Results</a></li> </ul> </li> </ul> </li> <li><a href="#orgeca85c7">2. Integral Force Feedback</a> <ul> <li><a href="#org8e730eb">2.1. Control Design</a> <ul> <li><a href="#org4aae4a5">2.1.1. Plant</a></li> <li><a href="#org9230021">2.1.2. Control Design</a></li> <li><a href="#orgc48be49">2.1.3. Diagonal Controller</a></li> </ul> </li> <li><a href="#org521b83c">2.2. Tomography Experiment</a> <ul> <li><a href="#org80693d0">2.2.1. Initialize the Simulation</a></li> <li><a href="#org828fe0c">2.2.2. Simulation</a></li> <li><a href="#orgba367cd">2.2.3. Compare with Undamped system</a></li> </ul> </li> <li><a href="#org64c89c0">2.3. Conclusion</a></li> </ul> </li> <li><a href="#org1bec1c8">3. Direct Velocity Feedback</a> <ul> <li><a href="#org34fcfd6">3.1. Control Design</a> <ul> <li><a href="#org2e5695f">3.1.1. Plant</a></li> <li><a href="#org8feed7c">3.1.2. Control Design</a></li> <li><a href="#org5d88841">3.1.3. Diagonal Controller</a></li> </ul> </li> <li><a href="#orgd0cf173">3.2. Tomography Experiment</a> <ul> <li><a href="#org41f51f2">3.2.1. Initialize the Simulation</a></li> <li><a href="#org0da77b8">3.2.2. Simulation</a></li> <li><a href="#org8956847">3.2.3. Compare with Undamped system</a></li> </ul> </li> <li><a href="#org4a46d6a">3.3. Conclusion</a></li> </ul> </li> <li><a href="#orgf8012d0">4. Inertial Control</a> <ul> <li><a href="#org47e2207">4.1. Control Design</a> <ul> <li><a href="#orga1c06d5">4.1.1. Plant</a></li> <li><a href="#orgee9c27b">4.1.2. Control Design</a></li> <li><a href="#org6241541">4.1.3. Diagonal Controller</a></li> </ul> </li> <li><a href="#org9625401">4.2. Tomography Experiment</a> <ul> <li><a href="#orgf3c8835">4.2.1. Initialize the Simulation</a></li> <li><a href="#org457a68a">4.2.2. Simulation</a></li> <li><a href="#org5c8213d">4.2.3. Compare with Undamped system</a></li> </ul> </li> <li><a href="#org4e39ecb">4.3. Conclusion</a></li> </ul> </li> <li><a href="#orgb97eda0">5. Comparison</a> <ul> <li><a href="#org7e7c35d">5.1. Load the plants</a></li> <li><a href="#org7c0e10c">5.2. Sensitivity to Disturbance</a></li> <li><a href="#org34d3217">5.3. Damped Plant</a></li> <li><a href="#orgc2cfa6b">5.4. Tomography Experiment</a> <ul> <li><a href="#orgb357d35">5.4.1. Frequency Domain</a></li> </ul> </li> </ul> </li> <li><a href="#orgb95a1fb">6. Useful Functions</a> <ul> <li><a href="#org624fc0d">6.1. prepareTomographyExperiment</a> <ul> <li><a href="#org4917bc7">6.1.1. Function Description</a></li> <li><a href="#org3c7b365">6.1.2. Optional Parameters</a></li> <li><a href="#org758e52a">6.1.3. Initialize the Simulation</a></li> </ul> </li> </ul> </li> </ul> </div> </div> <p> First, in section <a href="#orgcd6de97">1</a>, we will looked at the undamped system. </p> <p> Then, we will compare three active damping techniques: </p> <ul class="org-ul"> <li>In section <a href="#org45880cb">2</a>: the integral force feedback is used</li> <li>In section <a href="#org88df20b">3</a>: the direct velocity feedback is used</li> <li>In section <a href="#orgcb7853a">4</a>: inertial control is used</li> </ul> <p> For each of the active damping technique, we will: </p> <ul class="org-ul"> <li>Look at the damped plant</li> <li>Simulate tomography experiments</li> <li>Compare the sensitivity from disturbances</li> </ul> <p> The disturbances are: </p> <ul class="org-ul"> <li>Ground motion</li> <li>Motion errors of all the stages</li> </ul> <div id="outline-container-org43bc922" class="outline-2"> <h2 id="org43bc922"><span class="section-number-2">1</span> Undamped System</h2> <div class="outline-text-2" id="text-1"> <p> <a id="orgcd6de97"></a> </p> <div class="note"> <p> All the files (data and Matlab scripts) are accessible <a href="data/undamped_system.zip">here</a>. </p> </div> <p> We first look at the undamped system. The performance of this undamped system will be compared with the damped system using various techniques. </p> </div> <div id="outline-container-org9a8111b" class="outline-3"> <h3 id="org9a8111b"><span class="section-number-3">1.1</span> Identification of the dynamics for Active Damping</h3> <div class="outline-text-3" id="text-1-1"> </div> <div id="outline-container-org813e9d0" class="outline-4"> <h4 id="org813e9d0"><span class="section-number-4">1.1.1</span> Initialize the Simulation</h4> <div class="outline-text-4" id="text-1-1-1"> <p> We initialize all the stages with the default parameters. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); </pre> </div> <p> The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span>); initializeSample(<span class="org-string">'mass'</span>, 50); </pre> </div> <p> We set the references to zero. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeReferences(); </pre> </div> <p> And all the controllers are set to 0. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>); K_ine = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_ine'</span>, <span class="org-string">'-append'</span>); K_iff = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>); K_dvf = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org85a96c0" class="outline-4"> <h4 id="org85a96c0"><span class="section-number-4">1.1.2</span> Identification</h4> <div class="outline-text-4" id="text-1-1-2"> <p> First, we identify the dynamics of the system using the <code>linearize</code> function. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nass_active_damping'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Fnl'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Dnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Fnlm'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Micro-Station'</span>], 3, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Vlm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>}; G.OutputName = {<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>, ... <span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>, ... <span class="org-string">'Vnlm1'</span>, <span class="org-string">'Vnlm2'</span>, <span class="org-string">'Vnlm3'</span>, <span class="org-string">'Vnlm4'</span>, <span class="org-string">'Vnlm5'</span>, <span class="org-string">'Vnlm6'</span>}; </pre> </div> <p> We then create transfer functions corresponding to the active damping plants. </p> <div class="org-src-container"> <pre class="src src-matlab">G_iff = minreal(G({<span class="org-string">'Fnlm1'</span>, <span class="org-string">'Fnlm2'</span>, <span class="org-string">'Fnlm3'</span>, <span class="org-string">'Fnlm4'</span>, <span class="org-string">'Fnlm5'</span>, <span class="org-string">'Fnlm6'</span>}, {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>})); G_dvf = minreal(G({<span class="org-string">'Dnlm1'</span>, <span class="org-string">'Dnlm2'</span>, <span class="org-string">'Dnlm3'</span>, <span class="org-string">'Dnlm4'</span>, <span class="org-string">'Dnlm5'</span>, <span class="org-string">'Dnlm6'</span>}, {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>})); G_ine = minreal(G({<span class="org-string">'Vnlm1'</span>, <span class="org-string">'Vnlm2'</span>, <span class="org-string">'Vnlm3'</span>, <span class="org-string">'Vnlm4'</span>, <span class="org-string">'Vnlm5'</span>, <span class="org-string">'Vnlm6'</span>}, {<span class="org-string">'Fnl1'</span>, <span class="org-string">'Fnl2'</span>, <span class="org-string">'Fnl3'</span>, <span class="org-string">'Fnl4'</span>, <span class="org-string">'Fnl5'</span>, <span class="org-string">'Fnl6'</span>})); </pre> </div> <p> And we save them for further analysis. </p> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/undamped_plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'G_ine'</span>); </pre> </div> </div> </div> <div id="outline-container-orgc478ad1" class="outline-4"> <h4 id="orgc478ad1"><span class="section-number-4">1.1.3</span> Obtained Plants for Active Damping</h4> <div class="outline-text-4" id="text-1-1-3"> <div id="org26a36fc" class="figure"> <p><img src="figs/nass_active_damping_iff_plant.png" alt="nass_active_damping_iff_plant.png" /> </p> <p><span class="figure-number">Figure 1: </span><code>G_iff</code>: IFF Plant (<a href="./figs/nass_active_damping_iff_plant.png">png</a>, <a href="./figs/nass_active_damping_iff_plant.pdf">pdf</a>)</p> </div> <div id="orgb866959" class="figure"> <p><img src="figs/nass_active_damping_ine_plant.png" alt="nass_active_damping_ine_plant.png" /> </p> <p><span class="figure-number">Figure 2: </span><code>G_dvf</code>: Plant for Direct Velocity Feedback (<a href="./figs/nass_active_damping_dvf_plant.png">png</a>, <a href="./figs/nass_active_damping_dvf_plant.pdf">pdf</a>)</p> </div> <div id="orgbeb0fe2" class="figure"> <p><img src="figs/nass_active_damping_inertial_plant.png" alt="nass_active_damping_inertial_plant.png" /> </p> <p><span class="figure-number">Figure 3: </span>Inertial Feedback Plant (<a href="./figs/nass_active_damping_inertial_plant.png">png</a>, <a href="./figs/nass_active_damping_inertial_plant.pdf">pdf</a>)</p> </div> </div> </div> </div> <div id="outline-container-org22150e6" class="outline-3"> <h3 id="org22150e6"><span class="section-number-3">1.2</span> Tomography Experiment</h3> <div class="outline-text-3" id="text-1-2"> </div> <div id="outline-container-org931bbc3" class="outline-4"> <h4 id="org931bbc3"><span class="section-number-4">1.2.1</span> Simulation</h4> <div class="outline-text-4" id="text-1-2-1"> <p> We initialize elements for the tomography experiment. </p> <div class="org-src-container"> <pre class="src src-matlab">prepareTomographyExperiment(); </pre> </div> <p> We change the simulation stop time. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'3'</span>); </pre> </div> <p> And we simulate the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'sim_nass_active_damping'</span>); </pre> </div> <p> Finally, we save the simulation results for further analysis </p> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'Eg'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org97e15e5" class="outline-4"> <h4 id="org97e15e5"><span class="section-number-4">1.2.2</span> Results</h4> <div class="outline-text-4" id="text-1-2-2"> <p> We load the results of tomography experiments. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>); t = linspace(0, 3, length(En(<span class="org-type">:</span>,1))); </pre> </div> <div id="orge980ab1" class="figure"> <p><img src="figs/nass_act_damp_undamped_sim_tomo_trans.png" alt="nass_act_damp_undamped_sim_tomo_trans.png" /> </p> <p><span class="figure-number">Figure 4: </span>Position Error during tomography experiment - Translations (<a href="./figs/nass_act_damp_undamped_sim_tomo_trans.png">png</a>, <a href="./figs/nass_act_damp_undamped_sim_tomo_trans.pdf">pdf</a>)</p> </div> <div id="org669dfe3" class="figure"> <p><img src="figs/nass_act_damp_undamped_sim_tomo_rot.png" alt="nass_act_damp_undamped_sim_tomo_rot.png" /> </p> <p><span class="figure-number">Figure 5: </span>Position Error during tomography experiment - Rotations (<a href="./figs/nass_act_damp_undamped_sim_tomo_rot.png">png</a>, <a href="./figs/nass_act_damp_undamped_sim_tomo_rot.pdf">pdf</a>)</p> </div> </div> </div> </div> </div> <div id="outline-container-orgeca85c7" class="outline-2"> <h2 id="orgeca85c7"><span class="section-number-2">2</span> Integral Force Feedback</h2> <div class="outline-text-2" id="text-2"> <p> <a id="org45880cb"></a> </p> <div class="note"> <p> All the files (data and Matlab scripts) are accessible <a href="data/iff.zip">here</a>. </p> </div> <p> Integral Force Feedback is applied on the simscape model. </p> </div> <div id="outline-container-org8e730eb" class="outline-3"> <h3 id="org8e730eb"><span class="section-number-3">2.1</span> Control Design</h3> <div class="outline-text-3" id="text-2-1"> </div> <div id="outline-container-org4aae4a5" class="outline-4"> <h4 id="org4aae4a5"><span class="section-number-4">2.1.1</span> Plant</h4> <div class="outline-text-4" id="text-2-1-1"> <p> Let’s load the previously indentified undamped plant: </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/undamped_plants.mat'</span>, <span class="org-string">'G_iff'</span>); </pre> </div> <p> Let’s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure <a href="#orgc1d7801">6</a>). </p> <div id="orgc1d7801" class="figure"> <p><img src="figs/iff_plant.png" alt="iff_plant.png" /> </p> <p><span class="figure-number">Figure 6: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/iff_plant.png">png</a>, <a href="./figs/iff_plant.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org9230021" class="outline-4"> <h4 id="org9230021"><span class="section-number-4">2.1.2</span> Control Design</h4> <div class="outline-text-4" id="text-2-1-2"> <p> The controller for each pair of actuator/sensor is: </p> <div class="org-src-container"> <pre class="src src-matlab">K_iff = 1000<span class="org-type">/</span>s; </pre> </div> <p> The corresponding loop gains are shown in figure <a href="#orgb6d4182">7</a>. </p> <div id="orgb6d4182" class="figure"> <p><img src="figs/iff_open_loop.png" alt="iff_open_loop.png" /> </p> <p><span class="figure-number">Figure 7: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/iff_open_loop.png">png</a>, <a href="./figs/iff_open_loop.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgc48be49" class="outline-4"> <h4 id="orgc48be49"><span class="section-number-4">2.1.3</span> Diagonal Controller</h4> <div class="outline-text-4" id="text-2-1-3"> <p> We create the diagonal controller and we add a minus sign as we have a positive feedback architecture. </p> <div class="org-src-container"> <pre class="src src-matlab">K_iff = <span class="org-type">-</span>K_iff<span class="org-type">*</span>eye(6); </pre> </div> <p> We save the controller for further analysis. </p> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/K_iff.mat'</span>, <span class="org-string">'K_iff'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-org521b83c" class="outline-3"> <h3 id="org521b83c"><span class="section-number-3">2.2</span> Tomography Experiment</h3> <div class="outline-text-3" id="text-2-2"> </div> <div id="outline-container-org80693d0" class="outline-4"> <h4 id="org80693d0"><span class="section-number-4">2.2.1</span> Initialize the Simulation</h4> <div class="outline-text-4" id="text-2-2-1"> <p> We initialize elements for the tomography experiment. </p> <div class="org-src-container"> <pre class="src src-matlab">prepareTomographyExperiment(); </pre> </div> <p> We set the IFF controller. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/K_iff.mat'</span>, <span class="org-string">'K_iff'</span>); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org828fe0c" class="outline-4"> <h4 id="org828fe0c"><span class="section-number-4">2.2.2</span> Simulation</h4> <div class="outline-text-4" id="text-2-2-2"> <p> We change the simulation stop time. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'3'</span>); </pre> </div> <p> And we simulate the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'sim_nass_active_damping'</span>); </pre> </div> <p> Finally, we save the simulation results for further analysis </p> <div class="org-src-container"> <pre class="src src-matlab">En_iff = En; Eg_iff = Eg; save(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En_iff'</span>, <span class="org-string">'Eg_iff'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-orgba367cd" class="outline-4"> <h4 id="orgba367cd"><span class="section-number-4">2.2.3</span> Compare with Undamped system</h4> <div class="outline-text-4" id="text-2-2-3"> <p> We load the results of tomography experiments. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'En_iff'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">t = linspace(0, 3, length(En(<span class="org-type">:</span>,1))); </pre> </div> <div id="org8a913a4" class="figure"> <p><img src="figs/nass_act_damp_iff_sim_tomo_trans.png" alt="nass_act_damp_iff_sim_tomo_trans.png" /> </p> <p><span class="figure-number">Figure 8: </span>Position Error during tomography experiment - Translations (<a href="./figs/nass_act_damp_iff_sim_tomo_trans.png">png</a>, <a href="./figs/nass_act_damp_iff_sim_tomo_trans.pdf">pdf</a>)</p> </div> <div id="org5a68859" class="figure"> <p><img src="figs/nass_act_damp_iff_sim_tomo_rot.png" alt="nass_act_damp_iff_sim_tomo_rot.png" /> </p> <p><span class="figure-number">Figure 9: </span>Position Error during tomography experiment - Rotations (<a href="./figs/nass_act_damp_iff_sim_tomo_rot.png">png</a>, <a href="./figs/nass_act_damp_iff_sim_tomo_rot.pdf">pdf</a>)</p> </div> </div> </div> </div> <div id="outline-container-org64c89c0" class="outline-3"> <h3 id="org64c89c0"><span class="section-number-3">2.3</span> Conclusion</h3> <div class="outline-text-3" id="text-2-3"> <div class="important"> <p> Integral Force Feedback: </p> <ul class="org-ul"> <li>Robust (guaranteed stability)</li> <li>Acceptable Damping</li> <li>Increase the sensitivity to disturbances at low frequencies</li> </ul> </div> </div> </div> </div> <div id="outline-container-org1bec1c8" class="outline-2"> <h2 id="org1bec1c8"><span class="section-number-2">3</span> Direct Velocity Feedback</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org88df20b"></a> </p> <div class="note"> <p> All the files (data and Matlab scripts) are accessible <a href="data/dvf.zip">here</a>. </p> </div> <p> In the Direct Velocity Feedback (DVF), a derivative feedback is applied between the measured actuator displacement to the actuator force input. The actuator displacement can be measured with a capacitive sensor for instance. </p> </div> <div id="outline-container-org34fcfd6" class="outline-3"> <h3 id="org34fcfd6"><span class="section-number-3">3.1</span> Control Design</h3> <div class="outline-text-3" id="text-3-1"> </div> <div id="outline-container-org2e5695f" class="outline-4"> <h4 id="org2e5695f"><span class="section-number-4">3.1.1</span> Plant</h4> <div class="outline-text-4" id="text-3-1-1"> <p> Let’s load the undamped plant: </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/undamped_plants.mat'</span>, <span class="org-string">'G_dvf'</span>); </pre> </div> <p> Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure <a href="#org7fbb7c6">10</a>). </p> <div id="org7fbb7c6" class="figure"> <p><img src="figs/dvf_plant.png" alt="dvf_plant.png" /> </p> <p><span class="figure-number">Figure 10: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/dvf_plant.png">png</a>, <a href="./figs/dvf_plant.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org8feed7c" class="outline-4"> <h4 id="org8feed7c"><span class="section-number-4">3.1.2</span> Control Design</h4> <div class="outline-text-4" id="text-3-1-2"> <p> The Direct Velocity Feedback is defined below. A Low pass Filter is added to make the controller transfer function proper. </p> <div class="org-src-container"> <pre class="src src-matlab">K_dvf = s<span class="org-type">*</span>20000<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10000); </pre> </div> <p> The obtained loop gains are shown in figure <a href="#orgdcfd988">11</a>. </p> <div id="orgdcfd988" class="figure"> <p><img src="figs/dvf_open_loop.png" alt="dvf_open_loop.png" /> </p> <p><span class="figure-number">Figure 11: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/dvf_open_loop.png">png</a>, <a href="./figs/dvf_open_loop.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org5d88841" class="outline-4"> <h4 id="org5d88841"><span class="section-number-4">3.1.3</span> Diagonal Controller</h4> <div class="outline-text-4" id="text-3-1-3"> <p> We create the diagonal controller and we add a minus sign as we have a positive feedback architecture. </p> <div class="org-src-container"> <pre class="src src-matlab">K_dvf = <span class="org-type">-</span>K_dvf<span class="org-type">*</span>eye(6); </pre> </div> <p> We save the controller for further analysis. </p> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/K_dvf.mat'</span>, <span class="org-string">'K_dvf'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-orgd0cf173" class="outline-3"> <h3 id="orgd0cf173"><span class="section-number-3">3.2</span> Tomography Experiment</h3> <div class="outline-text-3" id="text-3-2"> </div> <div id="outline-container-org41f51f2" class="outline-4"> <h4 id="org41f51f2"><span class="section-number-4">3.2.1</span> Initialize the Simulation</h4> <div class="outline-text-4" id="text-3-2-1"> <p> We initialize elements for the tomography experiment. </p> <div class="org-src-container"> <pre class="src src-matlab">prepareTomographyExperiment(); </pre> </div> <p> We set the DVF controller. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/K_dvf.mat'</span>, <span class="org-string">'K_dvf'</span>); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org0da77b8" class="outline-4"> <h4 id="org0da77b8"><span class="section-number-4">3.2.2</span> Simulation</h4> <div class="outline-text-4" id="text-3-2-2"> <p> We change the simulation stop time. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'3'</span>); </pre> </div> <p> And we simulate the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'sim_nass_active_damping'</span>); </pre> </div> <p> Finally, we save the simulation results for further analysis </p> <div class="org-src-container"> <pre class="src src-matlab">En_dvf = En; Eg_dvf = Eg; save(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En_dvf'</span>, <span class="org-string">'Eg_dvf'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org8956847" class="outline-4"> <h4 id="org8956847"><span class="section-number-4">3.2.3</span> Compare with Undamped system</h4> <div class="outline-text-4" id="text-3-2-3"> <p> We load the results of tomography experiments. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'En_dvf'</span>); t = linspace(0, 3, length(En(<span class="org-type">:</span>,1))); </pre> </div> <div id="orgd62f9ce" class="figure"> <p><img src="figs/nass_act_damp_dvf_sim_tomo_trans.png" alt="nass_act_damp_dvf_sim_tomo_trans.png" /> </p> <p><span class="figure-number">Figure 12: </span>Position Error during tomography experiment - Translations (<a href="./figs/nass_act_damp_dvf_sim_tomo_trans.png">png</a>, <a href="./figs/nass_act_damp_dvf_sim_tomo_trans.pdf">pdf</a>)</p> </div> <div id="org8213265" class="figure"> <p><img src="figs/nass_act_damp_dvf_sim_tomo_rot.png" alt="nass_act_damp_dvf_sim_tomo_rot.png" /> </p> <p><span class="figure-number">Figure 13: </span>Position Error during tomography experiment - Rotations (<a href="./figs/nass_act_damp_dvf_sim_tomo_rot.png">png</a>, <a href="./figs/nass_act_damp_dvf_sim_tomo_rot.pdf">pdf</a>)</p> </div> </div> </div> </div> <div id="outline-container-org4a46d6a" class="outline-3"> <h3 id="org4a46d6a"><span class="section-number-3">3.3</span> Conclusion</h3> <div class="outline-text-3" id="text-3-3"> <div class="important"> <p> Direct Velocity Feedback: </p> <ul class="org-ul"> <li></li> </ul> </div> </div> </div> </div> <div id="outline-container-orgf8012d0" class="outline-2"> <h2 id="orgf8012d0"><span class="section-number-2">4</span> Inertial Control</h2> <div class="outline-text-2" id="text-4"> <p> <a id="orgcb7853a"></a> </p> <div class="note"> <p> All the files (data and Matlab scripts) are accessible <a href="data/ine.zip">here</a>. </p> </div> <p> In Inertial Control, a feedback is applied between the measured <b>absolute</b> velocity of the platform to the actuator force input. </p> </div> <div id="outline-container-org47e2207" class="outline-3"> <h3 id="org47e2207"><span class="section-number-3">4.1</span> Control Design</h3> <div class="outline-text-3" id="text-4-1"> </div> <div id="outline-container-orga1c06d5" class="outline-4"> <h4 id="orga1c06d5"><span class="section-number-4">4.1.1</span> Plant</h4> <div class="outline-text-4" id="text-4-1-1"> <p> Let’s load the undamped plant: </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/undamped_plants.mat'</span>, <span class="org-string">'G_ine'</span>); </pre> </div> <p> Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure <a href="#org8ebf5ec">14</a>). </p> <div id="org8ebf5ec" class="figure"> <p><img src="figs/ine_plant.png" alt="ine_plant.png" /> </p> <p><span class="figure-number">Figure 14: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/ine_plant.png">png</a>, <a href="./figs/ine_plant.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgee9c27b" class="outline-4"> <h4 id="orgee9c27b"><span class="section-number-4">4.1.2</span> Control Design</h4> <div class="outline-text-4" id="text-4-1-2"> <p> The controller is defined below and the obtained loop gain is shown in figure <a href="#orgf0d92b7">15</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">K_ine = 1e3<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100)); </pre> </div> <div id="orgf0d92b7" class="figure"> <p><img src="figs/ine_open_loop_gain.png" alt="ine_open_loop_gain.png" /> </p> <p><span class="figure-number">Figure 15: </span>Loop Gain for Inertial Control (<a href="./figs/ine_open_loop_gain.png">png</a>, <a href="./figs/ine_open_loop_gain.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org6241541" class="outline-4"> <h4 id="org6241541"><span class="section-number-4">4.1.3</span> Diagonal Controller</h4> <div class="outline-text-4" id="text-4-1-3"> <p> We create the diagonal controller and we add a minus sign as we have a positive feedback architecture. </p> <div class="org-src-container"> <pre class="src src-matlab">K_ine = <span class="org-type">-</span>K_ine<span class="org-type">*</span>eye(6); </pre> </div> <p> We save the controller for further analysis. </p> <div class="org-src-container"> <pre class="src src-matlab">save(<span class="org-string">'./active_damping/mat/K_ine.mat'</span>, <span class="org-string">'K_ine'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-org9625401" class="outline-3"> <h3 id="org9625401"><span class="section-number-3">4.2</span> Tomography Experiment</h3> <div class="outline-text-3" id="text-4-2"> </div> <div id="outline-container-orgf3c8835" class="outline-4"> <h4 id="orgf3c8835"><span class="section-number-4">4.2.1</span> Initialize the Simulation</h4> <div class="outline-text-4" id="text-4-2-1"> <p> We initialize elements for the tomography experiment. </p> <div class="org-src-container"> <pre class="src src-matlab">prepareTomographyExperiment(); </pre> </div> <p> We set the Inertial controller. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/K_ine.mat'</span>, <span class="org-string">'K_ine'</span>); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_ine'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org457a68a" class="outline-4"> <h4 id="org457a68a"><span class="section-number-4">4.2.2</span> Simulation</h4> <div class="outline-text-4" id="text-4-2-2"> <p> We change the simulation stop time. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, <span class="org-string">'3'</span>); </pre> </div> <p> And we simulate the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-simulink-keyword">sim</span>(<span class="org-string">'sim_nass_active_damping'</span>); </pre> </div> <p> Finally, we save the simulation results for further analysis </p> <div class="org-src-container"> <pre class="src src-matlab">En_ine = En; Eg_ine = Eg; save(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En_ine'</span>, <span class="org-string">'Eg_ine'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> <div id="outline-container-org5c8213d" class="outline-4"> <h4 id="org5c8213d"><span class="section-number-4">4.2.3</span> Compare with Undamped system</h4> <div class="outline-text-4" id="text-4-2-3"> <p> We load the results of tomography experiments. </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'En_ine'</span>); t = linspace(0, 3, length(En_ine(<span class="org-type">:</span>,1))); </pre> </div> <div id="orga568df8" class="figure"> <p><img src="figs/nass_act_damp_ine_sim_tomo_trans.png" alt="nass_act_damp_ine_sim_tomo_trans.png" /> </p> <p><span class="figure-number">Figure 16: </span>Position Error during tomography experiment - Translations (<a href="./figs/nass_act_damp_ine_sim_tomo_trans.png">png</a>, <a href="./figs/nass_act_damp_ine_sim_tomo_trans.pdf">pdf</a>)</p> </div> <div id="org90aff48" class="figure"> <p><img src="figs/nass_act_damp_ine_sim_tomo_rot.png" alt="nass_act_damp_ine_sim_tomo_rot.png" /> </p> <p><span class="figure-number">Figure 17: </span>Position Error during tomography experiment - Rotations (<a href="./figs/nass_act_damp_ine_sim_tomo_rot.png">png</a>, <a href="./figs/nass_act_damp_ine_sim_tomo_rot.pdf">pdf</a>)</p> </div> </div> </div> </div> <div id="outline-container-org4e39ecb" class="outline-3"> <h3 id="org4e39ecb"><span class="section-number-3">4.3</span> Conclusion</h3> <div class="outline-text-3" id="text-4-3"> <div class="important"> <p> Inertial Control: </p> </div> </div> </div> </div> <div id="outline-container-orgb97eda0" class="outline-2"> <h2 id="orgb97eda0"><span class="section-number-2">5</span> Comparison</h2> <div class="outline-text-2" id="text-5"> <p> <a id="org00d859c"></a> </p> </div> <div id="outline-container-org7e7c35d" class="outline-3"> <h3 id="org7e7c35d"><span class="section-number-3">5.1</span> Load the plants</h3> <div class="outline-text-3" id="text-5-1"> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_ine'</span>, <span class="org-string">'G_dvf'</span>); </pre> </div> </div> </div> <div id="outline-container-org7c0e10c" class="outline-3"> <h3 id="org7c0e10c"><span class="section-number-3">5.2</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-5-2"> <div id="org1f40d6f" class="figure"> <p><img src="figs/sensitivity_comp_ground_motion_z.png" alt="sensitivity_comp_ground_motion_z.png" /> </p> <p><span class="figure-number">Figure 18: </span>caption (<a href="./figs/sensitivity_comp_ground_motion_z.png">png</a>, <a href="./figs/sensitivity_comp_ground_motion_z.pdf">pdf</a>)</p> </div> <div id="org489ca09" class="figure"> <p><img src="figs/sensitivity_comp_direct_forces_z.png" alt="sensitivity_comp_direct_forces_z.png" /> </p> <p><span class="figure-number">Figure 19: </span>caption (<a href="./figs/sensitivity_comp_direct_forces_z.png">png</a>, <a href="./figs/sensitivity_comp_direct_forces_z.pdf">pdf</a>)</p> </div> <div id="orgdc0124f" class="figure"> <p><img src="figs/sensitivity_comp_spindle_z.png" alt="sensitivity_comp_spindle_z.png" /> </p> <p><span class="figure-number">Figure 20: </span>caption (<a href="./figs/sensitivity_comp_spindle_z.png">png</a>, <a href="./figs/sensitivity_comp_spindle_z.pdf">pdf</a>)</p> </div> <div id="orgddca189" class="figure"> <p><img src="figs/sensitivity_comp_ty_z.png" alt="sensitivity_comp_ty_z.png" /> </p> <p><span class="figure-number">Figure 21: </span>caption (<a href="./figs/sensitivity_comp_ty_z.png">png</a>, <a href="./figs/sensitivity_comp_ty_z.pdf">pdf</a>)</p> </div> <div id="orgba56d42" class="figure"> <p><img src="figs/sensitivity_comp_ty_x.png" alt="sensitivity_comp_ty_x.png" /> </p> <p><span class="figure-number">Figure 22: </span>caption (<a href="./figs/sensitivity_comp_ty_x.png">png</a>, <a href="./figs/sensitivity_comp_ty_x.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org34d3217" class="outline-3"> <h3 id="org34d3217"><span class="section-number-3">5.3</span> Damped Plant</h3> <div class="outline-text-3" id="text-5-3"> <div id="org14da053" class="figure"> <p><img src="figs/plant_comp_damping_z.png" alt="plant_comp_damping_z.png" /> </p> <p><span class="figure-number">Figure 23: </span>Plant for the \(z\) direction for different active damping technique used (<a href="./figs/plant_comp_damping_z.png">png</a>, <a href="./figs/plant_comp_damping_z.pdf">pdf</a>)</p> </div> <div id="org1eac68b" class="figure"> <p><img src="figs/plant_comp_damping_x.png" alt="plant_comp_damping_x.png" /> </p> <p><span class="figure-number">Figure 24: </span>Plant for the \(x\) direction for different active damping technique used (<a href="./figs/plant_comp_damping_x.png">png</a>, <a href="./figs/plant_comp_damping_x.pdf">pdf</a>)</p> </div> <div id="orge00f3b6" class="figure"> <p><img src="figs/plant_comp_damping_coupling.png" alt="plant_comp_damping_coupling.png" /> </p> <p><span class="figure-number">Figure 25: </span>Comparison of one off-diagonal plant for different damping technique applied (<a href="./figs/plant_comp_damping_coupling.png">png</a>, <a href="./figs/plant_comp_damping_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgc2cfa6b" class="outline-3"> <h3 id="orgc2cfa6b"><span class="section-number-3">5.4</span> Tomography Experiment</h3> <div class="outline-text-3" id="text-5-4"> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'./active_damping/mat/tomo_exp.mat'</span>, <span class="org-string">'En'</span>, <span class="org-string">'En_iff'</span>, <span class="org-string">'En_dvf'</span>, <span class="org-string">'En_ine'</span>); t = linspace(0, 3, length(En(<span class="org-type">:</span>,1))); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">rms(sqrt(En(<span class="org-type">:</span>, 1)<span class="org-type">.^</span>2 <span class="org-type">+</span> En(<span class="org-type">:</span>, 2)<span class="org-type">.^</span>2 <span class="org-type">+</span> En(<span class="org-type">:</span>, 3)<span class="org-type">.^</span>2)) rms(sqrt(En_ine(<span class="org-type">:</span>, 1)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_ine(<span class="org-type">:</span>, 2)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_ine(<span class="org-type">:</span>, 3)<span class="org-type">.^</span>2)) rms(sqrt(En_dvf(<span class="org-type">:</span>, 1)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_dvf(<span class="org-type">:</span>, 2)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_dvf(<span class="org-type">:</span>, 3)<span class="org-type">.^</span>2)) rms(sqrt(En_iff(<span class="org-type">:</span>, 1)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_iff(<span class="org-type">:</span>, 2)<span class="org-type">.^</span>2 <span class="org-type">+</span> En_iff(<span class="org-type">:</span>, 3)<span class="org-type">.^</span>2)) </pre> </div> </div> <div id="outline-container-orgb357d35" class="outline-4"> <h4 id="orgb357d35"><span class="section-number-4">5.4.1</span> Frequency Domain</h4> <div class="outline-text-4" id="text-5-4-1"> <div class="org-src-container"> <pre class="src src-matlab">Ts = t(1); <span class="org-comment">% Sample Time for the Data [s]</span> n_av = 8; han_win = hanning(ceil(length(En(<span class="org-type">:</span>, 1))<span class="org-type">/</span>n_av)); [pdx, f] = pwelch(Ern(<span class="org-type">:</span>, 1), han_win, [], [], 1<span class="org-type">/</span>Ts); </pre> </div> </div> </div> </div> </div> <div id="outline-container-orgb95a1fb" class="outline-2"> <h2 id="orgb95a1fb"><span class="section-number-2">6</span> Useful Functions</h2> <div class="outline-text-2" id="text-6"> </div> <div id="outline-container-org624fc0d" class="outline-3"> <h3 id="org624fc0d"><span class="section-number-3">6.1</span> prepareTomographyExperiment</h3> <div class="outline-text-3" id="text-6-1"> <p> <a id="org2f22626"></a> </p> <p> This Matlab function is accessible <a href="src/prepareTomographyExperiment.m">here</a>. </p> </div> <div id="outline-container-org4917bc7" class="outline-4"> <h4 id="org4917bc7"><span class="section-number-4">6.1.1</span> Function Description</h4> <div class="outline-text-4" id="text-6-1-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[]</span> = <span class="org-function-name">prepareTomographyExperiment</span>(<span class="org-variable-name">args</span>) </pre> </div> </div> </div> <div id="outline-container-org3c7b365" class="outline-4"> <h4 id="org3c7b365"><span class="section-number-4">6.1.2</span> Optional Parameters</h4> <div class="outline-text-4" id="text-6-1-2"> <div class="org-src-container"> <pre class="src src-matlab">arguments args.nass_actuator char {mustBeMember(args.nass_actuator,{<span class="org-string">'piezo'</span>, <span class="org-string">'lorentz'</span>})} = <span class="org-string">'piezo'</span> args.sample_mass (1,1) double {mustBeNumeric, mustBePositive} = 50 args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1 <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-org758e52a" class="outline-4"> <h4 id="org758e52a"><span class="section-number-4">6.1.3</span> Initialize the Simulation</h4> <div class="outline-text-4" id="text-6-1-3"> <p> We initialize all the stages with the default parameters. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); </pre> </div> <p> The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeNanoHexapod(<span class="org-string">'actuator'</span>, args.nass_actuator); initializeSample(<span class="org-string">'mass'</span>, args.sample_mass); </pre> </div> <p> We set the references to zero. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating'</span>, <span class="org-string">'Rz_period'</span>, args.Ry_period); </pre> </div> <p> And all the controllers are set to 0. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span>); K_ine = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_ine'</span>, <span class="org-string">'-append'</span>); K_iff = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span>); K_dvf = tf(zeros(6)); save(<span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span>); </pre> </div> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-01-15 mer. 16:22</p> </div> </body> </html>