#+TITLE: HAC-LAC applied on the Simscape Model :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Introduction :ignore: The position $\bm{\mathcal{X}}$ of the Sample with respect to the granite is measured. It is then compare to the wanted position of the Sample $\bm{r}_\mathcal{X}$ in order to obtain the position error $\bm{\epsilon}_\mathcal{X}$ of the Sample with respect to a frame attached to the Stewart top platform. #+begin_src latex :file hac_lac_control_schematic.pdf \begin{tikzpicture} \node[block={3.0cm}{3.0cm}] (G) {$G$}; % Input and outputs coordinates \coordinate[] (outputX) at ($(G.south east)!0.25!(G.north east)$); \coordinate[] (outputL) at ($(G.south east)!0.75!(G.north east)$); \draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$}; \draw[->] (outputL) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{L}}$}; % Blocs \node[addb, left= of G] (addF) {}; \node[block, left=1.2 of addF] (Kx) {$\bm{K}_\mathcal{X}$}; \node[block={2cm}{2cm}, align=center, left=1.2 of Kx] (subx) {Computes\\Position\\Error}; \node[block, above= of addF] (Kl) {$\bm{K}_\mathcal{L}$}; \node[addb={+}{}{}{-}{}, above= of Kl] (subl) {}; \node[block, align=center, left=0.8 of subl] (invK) {Inverse\\Kinematics}; % Connections and labels \draw[<-] (subx.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-0.8, 0); \draw[->] ($(subx.east) + (0.2, 0)$)node[branch]{} |- (invK.west); \draw[->] (invK.east) -- (subl.west) node[above left]{$\bm{r}_\mathcal{L}$}; \draw[->] (subl.south) -- (Kl.north) node[above right]{$\bm{\epsilon}_\mathcal{L}$}; \draw[->] (Kl.south) -- (addF.north); \draw[->] (subx.east) -- (Kx.west) node[above left]{$\bm{\epsilon}_\mathcal{X}$}; \draw[->] (Kx.east) node[above right]{$\bm{\tau}_\mathcal{X}$} -- (addF.west); \draw[->] (addF.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] ($(outputL.east) + (0.4, 0)$)node[branch](L){} |- (subl.east); \draw[->] ($(outputX.east) + (1.2, 0)$)node[branch]{} -- ++(0, -1.6) -| (subx.south); \begin{scope}[on background layer] \node[fit={(G.south-|Kl.west) (L|-subl.north)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:hac_lac_control_schematic #+caption: HAC-LAC Control Architecture used for the Control of the NASS #+RESULTS: [[file:figs/hac_lac_control_schematic.png]] * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src #+begin_src matlab open('nass_model.slx') #+end_src * Initialization We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); #+end_src The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. #+begin_src matlab initializeNanoHexapod('actuator', 'piezo'); initializeSample('mass', 1); #+end_src We set the references that corresponds to a tomography experiment. #+begin_src matlab initializeReferences('Rz_type', 'rotating', 'Rz_period', 1); #+end_src #+begin_src matlab initializeDisturbances(); #+end_src Open Loop. #+begin_src matlab initializeController('type', 'open-loop'); #+end_src And we put some gravity. #+begin_src matlab initializeSimscapeConfiguration('gravity', true); #+end_src We log the signals. #+begin_src matlab initializeLoggingConfiguration('log', 'all'); #+end_src * Low Authority Control - Direct Velocity Feedback $\bm{K}_\mathcal{L}$ ** Introduction :ignore: The first loop closed corresponds to a direct velocity feedback loop. The design of the associated decentralized controller is explained in [[file:active_damping.org][this]] file. ** Identification #+begin_src matlab %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Relative Motion Outputs %% Run the linearization G_dvf = linearize(mdl, io, 0); G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}; #+end_src ** Plant #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_dvf(i,i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(i,i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src ** Root Locus #+begin_src matlab :exports none gains = logspace(0, 5, 500); figure; hold on; plot(real(pole(G_dvf)), imag(pole(G_dvf)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G_dvf)), imag(tzero(G_dvf)), 'o'); for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G_dvf, (gains(i)*s)*eye(6))); plot(real(cl_poles), imag(cl_poles), '.'); end % ylim([0, 1.1*max(imag(pole(G_dvf)))]); % xlim([-1.1*max(imag(pole(G_dvf))),0]); xlabel('Real Part') ylabel('Imaginary Part') axis square #+end_src ** Controller and Loop Gain #+begin_src matlab K_dvf = s*15000/(1 + s/2/pi/10000); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G_dvf(i,i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab K_dvf = -K_dvf*eye(6); #+end_src * High Authority Control - $\bm{K}_\mathcal{X}$ ** Identification of the damped plant #+begin_src matlab Kx = tf(zeros(6)); #+end_src #+begin_src matlab initializeController('type', 'hac-dvf'); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror %% Run the linearization G = linearize(mdl, io, 0); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; #+end_src The minus sine is put here because there is already a minus sign included due to the computation of the position error. #+begin_src matlab load('mat/stages.mat', 'nano_hexapod'); Gx = -G*inv(nano_hexapod.J'); Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'}; figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Diagonal elements of the Plant'); ax2 = subplot(2, 2, 3); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i}); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend(); ax3 = subplot(2, 2, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Off-Diagonal elements of the Plant'); ax4 = subplot(2, 2, 4); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src ** Controller Design The controller consists of: - A pure integrator - A Second integrator up to half the wanted bandwidth - A Lead around the cross-over frequency - A low pass filter with a cut-off equal to two times the wanted bandwidth #+begin_src matlab wc = 2*pi*15; % Bandwidth Bandwidth [rad/s] h = 1.5; % Lead parameter Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * ((s/wc*2 + 1)/(s/wc*2)) * (1/(1 + s/wc/2)); % Normalization of the gain of have a loop gain of 1 at frequency wc Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc)))); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'}; figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Diagonal elements of the Plant'); ax2 = subplot(2, 2, 3); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))), 'DisplayName', labels{i}); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend(); ax3 = subplot(2, 2, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gx(i, j)*Kx(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Off-Diagonal elements of the Plant'); ax4 = subplot(2, 2, 4); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src #+begin_src matlab isstable(feedback(Gx*Kx, eye(6), -1)) #+end_src #+begin_src matlab Kx = inv(nano_hexapod.J')*Kx; #+end_src #+begin_src matlab isstable(feedback(G*Kx, eye(6), 1)) #+end_src * Simulation #+begin_src matlab load('mat/conf_simulink.mat'); set_param(conf_simulink, 'StopTime', '1.5'); #+end_src And we simulate the system. #+begin_src matlab sim('nass_model'); #+end_src #+begin_src matlab save('./mat/tomo_exp_hac_lac.mat', 'simout'); #+end_src * Results #+begin_src matlab load('./mat/tomo_exp_hac_lac.mat', 'simout'); #+end_src #+begin_src matlab :exports none figure; hold on; plot(simout.Em.En.Data(:,1), simout.Em.En.Data(:,2), 'DisplayName', '$\epsilon_{x,y}$ - OL') xlabel('X Motion [m]'); ylabel('Y Motion [m]'); legend(); #+end_src #+begin_src matlab :exports none figure; hold on; plot3(simout.Em.En.Data(:,1), simout.Em.En.Data(:,2), simout.Em.En.Data(:,3)) xlabel('X Motion [m]'); ylabel('Y Motion [m]'); #+end_src #+begin_src matlab :exports none figure; hold on; plot3(simout.Em.En.Data(:,4), simout.Em.En.Data(:,5), simout.Em.En.Data(:,3)) xlabel('X Motion [m]'); ylabel('Y Motion [m]'); #+end_src #+begin_src matlab :exports none figure; hold on; plot(simout.Em.En.Time, simout.Em.En.Data(:,1), 'DisplayName', '$\epsilon_{x}$') plot(simout.Em.En.Time, simout.Em.En.Data(:,2), 'DisplayName', '$\epsilon_{y}$') plot(simout.Em.En.Time, simout.Em.En.Data(:,3), 'DisplayName', '$\epsilon_{z}$') hold off; legend(); xlabel('Time [s]'); ylabel('Position Error [m]'); #+end_src #+begin_src matlab :exports none figure; hold on; plot(simout.Em.En.Time, simout.Em.En.Data(:,4), 'DisplayName', '$\epsilon_{R_x}$') plot(simout.Em.En.Time, simout.Em.En.Data(:,5), 'DisplayName', '$\epsilon_{R_y}$') plot(simout.Em.En.Time, simout.Em.En.Data(:,6), 'DisplayName', '$\epsilon_{R_z}$') hold off; legend(); xlabel('Time [s]'); ylabel('Orientation Error [rad]'); #+end_src * Undamped System :noexport: <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src #+begin_src matlab open('nass_model.slx') #+end_src ** Identification of the plant *** Initialize the Simulation We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); #+end_src The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. #+begin_src matlab initializeNanoHexapod('actuator', 'piezo'); initializeSample('mass', 50); #+end_src No disturbances. #+begin_src matlab initializeDisturbances(); #+end_src We set the references to zero. #+begin_src matlab initializeReferences(); #+end_src And all the controllers are set to 0. #+begin_src matlab initializeController('type', 'open-loop'); #+end_src *** Identification First, we identify the dynamics of the system using the =linearize= function. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1; % Metrology Outputs %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src #+begin_src matlab load('mat/stages.mat', 'nano_hexapod'); G_cart = minreal(G*inv(nano_hexapod.J')); G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}; #+end_src #+begin_src matlab G_legs = minreal(inv(nano_hexapod.J)*G); G_legs.OutputName = {'e1', 'e2', 'e3', 'e4', 'e5', 'e6'}; #+end_src *** Display TF #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_cart(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))), 'DisplayName', [G_cart.InputName{i}, ' to ', G_cart.OutputName{i}]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/plant_G_cart.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:plant_G_cart #+CAPTION: Transfer Function from forces applied by the nano-hexapod to position error ([[./figs/plant_G_cart.png][png]], [[./figs/plant_G_cart.pdf][pdf]]) [[file:figs/plant_G_cart.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src *** Obtained Plants for Active Damping #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_iff_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_iff_plant #+CAPTION: =G_iff=: IFF Plant ([[./figs/nass_active_damping_iff_plant.png][png]], [[./figs/nass_active_damping_iff_plant.pdf][pdf]]) [[file:figs/nass_active_damping_iff_plant.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_dvf_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_dvf_plant #+CAPTION: =G_dvf=: Plant for Direct Velocity Feedback ([[./figs/nass_active_damping_dvf_plant.png][png]], [[./figs/nass_active_damping_dvf_plant.pdf][pdf]]) [[file:figs/nass_active_damping_ine_plant.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_inertial_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_inertial_plant #+CAPTION: Inertial Feedback Plant ([[./figs/nass_active_damping_inertial_plant.png][png]], [[./figs/nass_active_damping_inertial_plant.pdf][pdf]]) [[file:figs/nass_active_damping_inertial_plant.png]] ** Tomography Experiment *** Simulation We initialize elements for the tomography experiment. #+begin_src matlab prepareTomographyExperiment(); #+end_src We change the simulation stop time. #+begin_src matlab load('mat/conf_simulink.mat'); set_param(conf_simulink, 'StopTime', '3'); #+end_src And we simulate the system. #+begin_src matlab sim('nass_model'); #+end_src Finally, we save the simulation results for further analysis #+begin_src matlab save('./mat/active_damping_tomo_exp.mat', 'En', 'Eg', '-append'); #+end_src *** Results We load the results of tomography experiments. #+begin_src matlab load('./mat/active_damping_tomo_exp.mat', 'En'); t = linspace(0, 3, length(En(:,1))); #+end_src #+begin_src matlab :exports none figure; hold on; plot(t, En(:,1), 'DisplayName', '$\epsilon_{x}$') plot(t, En(:,2), 'DisplayName', '$\epsilon_{y}$') plot(t, En(:,3), 'DisplayName', '$\epsilon_{z}$') hold off; legend(); xlabel('Time [s]'); ylabel('Position Error [m]'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_act_damp_undamped_sim_tomo_trans.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_act_damp_undamped_sim_tomo_trans #+CAPTION: Position Error during tomography experiment - Translations ([[./figs/nass_act_damp_undamped_sim_tomo_trans.png][png]], [[./figs/nass_act_damp_undamped_sim_tomo_trans.pdf][pdf]]) [[file:figs/nass_act_damp_undamped_sim_tomo_trans.png]] #+begin_src matlab :exports none figure; hold on; plot(t, En(:,4), 'DisplayName', '$\epsilon_{\theta_x}$') plot(t, En(:,5), 'DisplayName', '$\epsilon_{\theta_y}$') plot(t, En(:,6), 'DisplayName', '$\epsilon_{\theta_z}$') hold off; xlim([0.5,inf]); legend(); xlabel('Time [s]'); ylabel('Position Error [rad]'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_act_damp_undamped_sim_tomo_rot.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_act_damp_undamped_sim_tomo_rot #+CAPTION: Position Error during tomography experiment - Rotations ([[./figs/nass_act_damp_undamped_sim_tomo_rot.png][png]], [[./figs/nass_act_damp_undamped_sim_tomo_rot.pdf][pdf]]) [[file:figs/nass_act_damp_undamped_sim_tomo_rot.png]] ** Verification of the transfer function from nano hexapod to metrology *** Initialize the Simulation We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); #+end_src The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. #+begin_src matlab initializeNanoHexapod('actuator', 'piezo'); initializeSample('mass', 50); #+end_src No disturbances. #+begin_src matlab initializeDisturbances('enable', false); #+end_src We set the references to zero. #+begin_src matlab initializeReferences(); #+end_src And all the controllers are set to 0. #+begin_src matlab initializeController('type', 'open-loop'); #+end_src *** Identification First, we identify the dynamics of the system using the =linearize= function. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1; % Metrology Outputs %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src #+begin_src matlab load('mat/stages.mat', 'nano_hexapod'); G_cart = minreal(G*inv(nano_hexapod.J')); G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}; #+end_src #+begin_src matlab G_legs = minreal(inv(nano_hexapod.J)*G); G_legs.OutputName = {'e1', 'e2', 'e3', 'e4', 'e5', 'e6'}; #+end_src *** Display TF #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_cart(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))), 'DisplayName', [G_cart.InputName{i}, ' to ', G_cart.OutputName{i}]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend(); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/plant_G_cart.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:plant_G_cart #+CAPTION: Transfer Function from forces applied by the nano-hexapod to position error ([[./figs/plant_G_cart.png][png]], [[./figs/plant_G_cart.pdf][pdf]]) [[file:figs/plant_G_cart.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src *** Obtained Plants for Active Damping #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_iff_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_iff_plant #+CAPTION: =G_iff=: IFF Plant ([[./figs/nass_active_damping_iff_plant.png][png]], [[./figs/nass_active_damping_iff_plant.pdf][pdf]]) [[file:figs/nass_active_damping_iff_plant.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_dvf_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_dvf_plant #+CAPTION: =G_dvf=: Plant for Direct Velocity Feedback ([[./figs/nass_active_damping_dvf_plant.png][png]], [[./figs/nass_active_damping_dvf_plant.pdf][pdf]]) [[file:figs/nass_active_damping_ine_plant.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/nass_active_damping_inertial_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:nass_active_damping_inertial_plant #+CAPTION: Inertial Feedback Plant ([[./figs/nass_active_damping_inertial_plant.png][png]], [[./figs/nass_active_damping_inertial_plant.pdf][pdf]]) [[file:figs/nass_active_damping_inertial_plant.png]]