<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2019-10-28 lun. 17:34 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Simscape Uniaxial Model</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/> <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/> <script type="text/javascript" src="../js/jquery.min.js"></script> <script type="text/javascript" src="../js/bootstrap.min.js"></script> <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script> <script type="text/javascript" src="../js/readtheorg.js"></script> <script type="text/javascript"> /* @licstart The following is the entire license notice for the JavaScript code in this tag. Copyright (C) 2012-2019 Free Software Foundation, Inc. The JavaScript code in this tag is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GNU GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The code is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details. As additional permission under GNU GPL version 3 section 7, you may distribute non-source (e.g., minimized or compacted) forms of that code without the copy of the GNU GPL normally required by section 4, provided you include this license notice and a URL through which recipients can access the Corresponding Source. @licend The above is the entire license notice for the JavaScript code in this tag. */ <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> </script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ displayAlign: "center", displayIndent: "0em", "HTML-CSS": { scale: 100, linebreaks: { automatic: "false" }, webFont: "TeX" }, SVG: {scale: 100, linebreaks: { automatic: "false" }, font: "TeX"}, NativeMML: {scale: 100}, TeX: { equationNumbers: {autoNumber: "AMS"}, MultLineWidth: "85%", TagSide: "right", TagIndent: ".8em" } }); </script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="../index.html"> UP </a> | <a accesskey="H" href="../index.html"> HOME </a> </div><div id="content"> <h1 class="title">Simscape Uniaxial Model</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgfc3044a">1. Simscape Model</a></li> <li><a href="#org8da4eb0">2. Undamped System</a> <ul> <li><a href="#orgcb2b0a1">2.1. Init</a></li> <li><a href="#org7f40bf7">2.2. Identification</a></li> <li><a href="#org7908bab">2.3. Sensitivity to Disturbances</a></li> <li><a href="#org5a57afd">2.4. Plant</a></li> </ul> </li> <li><a href="#org68d1bb0">3. Integral Force Feedback</a> <ul> <li><a href="#orga5e22eb">3.1. Control Design</a></li> <li><a href="#org0fdf2fd">3.2. Identification</a></li> <li><a href="#org8b81fd6">3.3. Sensitivity to Disturbance</a></li> <li><a href="#org80d5d2d">3.4. Damped Plant</a></li> <li><a href="#orga9ed49c">3.5. Conclusion</a></li> </ul> </li> <li><a href="#org5d0bc94">4. Relative Motion Control</a> <ul> <li><a href="#org4ffacc7">4.1. Control Design</a></li> <li><a href="#orgf86862c">4.2. Identification</a></li> <li><a href="#org0211838">4.3. Sensitivity to Disturbance</a></li> <li><a href="#orgefb061f">4.4. Damped Plant</a></li> <li><a href="#org467a5d6">4.5. Conclusion</a></li> </ul> </li> <li><a href="#org408eed0">5. Direct Velocity Feedback</a> <ul> <li><a href="#org64e7b3f">5.1. Control Design</a></li> <li><a href="#orga75fa6d">5.2. Identification</a></li> <li><a href="#org0d535fa">5.3. Sensitivity to Disturbance</a></li> <li><a href="#org9643807">5.4. Damped Plant</a></li> <li><a href="#org6e6fd47">5.5. Conclusion</a></li> </ul> </li> <li><a href="#orgd792cab">6. With Cedrat Piezo-electric Actuators</a> <ul> <li><a href="#org7707a0a">6.1. Identification</a></li> <li><a href="#orgd921ae7">6.2. Control Design</a></li> <li><a href="#org1d5a39c">6.3. Identification</a></li> <li><a href="#orgb163c6c">6.4. Sensitivity to Disturbance</a></li> <li><a href="#org552dcab">6.5. Damped Plant</a></li> <li><a href="#org5065aae">6.6. Conclusion</a></li> </ul> </li> <li><a href="#org60dfb12">7. Comparison of Active Damping Techniques</a> <ul> <li><a href="#org249a650">7.1. Load the plants</a></li> <li><a href="#org0c1cccb">7.2. Sensitivity to Disturbance</a></li> <li><a href="#orgb54c9e3">7.3. Damped Plant</a></li> <li><a href="#org1c67523">7.4. Conclusion</a></li> </ul> </li> </ul> </div> </div> <p> The idea is to use the same model as the full Simscape Model but to restrict the motion only in the vertical direction. </p> <p> This is done in order to more easily study the system and evaluate control techniques. </p> <div id="outline-container-orgfc3044a" class="outline-2"> <h2 id="orgfc3044a"><span class="section-number-2">1</span> Simscape Model</h2> <div class="outline-text-2" id="text-1"> <p> A schematic of the uniaxial model used for simulations is represented in figure <a href="#orgc5e0a56">1</a>. </p> <p> The perturbations \(w\) are: </p> <ul class="org-ul"> <li>\(F_s\): direct forces applied to the sample such as inertia forces and cable forces</li> <li>\(F_{rz}\): parasitic forces due to the rotation of the spindle</li> <li>\(F_{ty}\): parasitic forces due to scans with the translation stage</li> <li>\(D_w\): ground motion</li> </ul> <p> The quantity to \(z\) to control is: </p> <ul class="org-ul"> <li>\(D\): the position of the sample with respect to the granite</li> </ul> <p> The measured quantities \(v\) are: </p> <ul class="org-ul"> <li>\(D\): the position of the sample with respect to the granite</li> </ul> <p> We study the use of an additional sensor: </p> <ul class="org-ul"> <li>\(F_n\): a force sensor located in the nano-hexapod</li> <li>\(v_n\): an absolute velocity sensor located on the top platform of the nano-hexapod</li> <li>\(d_r\): a relative motion sensor located in the nano-hexapod</li> </ul> <p> The control signal \(u\) is: </p> <ul class="org-ul"> <li>\(F\) the force applied by the nano-hexapod actuator</li> </ul> <div id="orgc5e0a56" class="figure"> <p><img src="figs/uniaxial-model-nass-flexible.png" alt="uniaxial-model-nass-flexible.png" /> </p> <p><span class="figure-number">Figure 1: </span>Schematic of the uniaxial model used</p> </div> <p> Few active damping techniques will be compared in order to decide which sensor is to be included in the system. Schematics of the active damping techniques are displayed in figure <a href="#orgdb9985c">2</a>. </p> <div id="orgdb9985c" class="figure"> <p><img src="figs/uniaxial-model-nass-flexible-active-damping.png" alt="uniaxial-model-nass-flexible-active-damping.png" /> </p> <p><span class="figure-number">Figure 2: </span>Comparison of used active damping techniques</p> </div> </div> </div> <div id="outline-container-org8da4eb0" class="outline-2"> <h2 id="org8da4eb0"><span class="section-number-2">2</span> Undamped System</h2> <div class="outline-text-2" id="text-2"> <p> Let's start by study the undamped system. </p> </div> <div id="outline-container-orgcb2b0a1" class="outline-3"> <h3 id="orgcb2b0a1"><span class="section-number-3">2.1</span> Init</h3> <div class="outline-text-3" id="text-2-1"> <p> We initialize all the stages with the default parameters. The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. </p> <p> All the controllers are set to 0 (Open Loop). </p> </div> </div> <div id="outline-container-org7f40bf7" class="outline-3"> <h3 id="org7f40bf7"><span class="section-number-3">2.2</span> Identification</h3> <div class="outline-text-3" id="text-2-2"> <p> We identify the dynamics of the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>; </pre> </div> <p> The inputs and outputs are defined below and corresponds to the name of simulink blocks. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <p> Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> <p> Finally, we save the identified system dynamics for further analysis. </p> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-org7908bab" class="outline-3"> <h3 id="org7908bab"><span class="section-number-3">2.3</span> Sensitivity to Disturbances</h3> <div class="outline-text-3" id="text-2-3"> <p> We show several plots representing the sensitivity to disturbances: </p> <ul class="org-ul"> <li>in figure <a href="#orgd82c2ce">3</a> the transfer functions from ground motion \(D_w\) to the sample position \(D\) and the transfer function from direct force on the sample \(F_s\) to the sample position \(D\) are shown</li> <li>in figure <a href="#org72d40e7">4</a>, it is the effect of parasitic forces of the positioning stages (\(F_{ty}\) and \(F_{rz}\)) on the position \(D\) of the sample that are shown</li> </ul> <div id="orgd82c2ce" class="figure"> <p><img src="figs/uniaxial-sensitivity-disturbances.png" alt="uniaxial-sensitivity-disturbances.png" /> </p> <p><span class="figure-number">Figure 3: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-disturbances.png">png</a>, <a href="./figs/uniaxial-sensitivity-disturbances.pdf">pdf</a>)</p> </div> <div id="org72d40e7" class="figure"> <p><img src="figs/uniaxial-sensitivity-force-dist.png" alt="uniaxial-sensitivity-force-dist.png" /> </p> <p><span class="figure-number">Figure 4: </span>Sensitivity to disturbances (<a href="./figs/uniaxial-sensitivity-force-dist.png">png</a>, <a href="./figs/uniaxial-sensitivity-force-dist.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org5a57afd" class="outline-3"> <h3 id="org5a57afd"><span class="section-number-3">2.4</span> Plant</h3> <div class="outline-text-3" id="text-2-4"> <p> The transfer function from the force \(F\) applied by the nano-hexapod to the position of the sample \(D\) is shown in figure <a href="#org5789c3f">5</a>. It corresponds to the plant to control. </p> <div id="org5789c3f" class="figure"> <p><img src="figs/uniaxial-plant.png" alt="uniaxial-plant.png" /> </p> <p><span class="figure-number">Figure 5: </span>Bode plot of the Plant (<a href="./figs/uniaxial-plant.png">png</a>, <a href="./figs/uniaxial-plant.pdf">pdf</a>)</p> </div> </div> </div> </div> <div id="outline-container-org68d1bb0" class="outline-2"> <h2 id="org68d1bb0"><span class="section-number-2">3</span> Integral Force Feedback</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org36327e7"></a> </p> <div id="org6ca8a23" class="figure"> <p><img src="figs/uniaxial-model-nass-flexible-iff.png" alt="uniaxial-model-nass-flexible-iff.png" /> </p> <p><span class="figure-number">Figure 6: </span>Uniaxial IFF Control Schematic</p> </div> </div> <div id="outline-container-orga5e22eb" class="outline-3"> <h3 id="orga5e22eb"><span class="section-number-3">3.1</span> Control Design</h3> <div class="outline-text-3" id="text-3-1"> <div class="org-src-container"> <pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Let's look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor. </p> <div id="org5063cb4" class="figure"> <p><img src="figs/uniaxial_iff_plant.png" alt="uniaxial_iff_plant.png" /> </p> <p><span class="figure-number">Figure 7: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_iff_plant.png">png</a>, <a href="./figs/uniaxial_iff_plant.pdf">pdf</a>)</p> </div> <p> The controller for each pair of actuator/sensor is: </p> <div class="org-src-container"> <pre class="src src-matlab">K_iff = <span class="org-type">-</span><span class="org-highlight-numbers-number">1000</span><span class="org-type">/</span>s; </pre> </div> <div id="org495687f" class="figure"> <p><img src="figs/uniaxial_iff_open_loop.png" alt="uniaxial_iff_open_loop.png" /> </p> <p><span class="figure-number">Figure 8: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_iff_open_loop.png">png</a>, <a href="./figs/uniaxial_iff_open_loop.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org0fdf2fd" class="outline-3"> <h3 id="org0fdf2fd"><span class="section-number-3">3.2</span> Identification</h3> <div class="outline-text-3" id="text-3-2"> <p> Let's initialize the system prior to identification. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround<span class="org-rainbow-delimiters-depth-1">()</span>; initializeGranite<span class="org-rainbow-delimiters-depth-1">()</span>; initializeTy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRz<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMicroHexapod<span class="org-rainbow-delimiters-depth-1">()</span>; initializeAxisc<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMirror<span class="org-rainbow-delimiters-depth-1">()</span>; initializeNanoHexapod<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; initializeSample<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> All the controllers are set to 0. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_iff = <span class="org-type">-</span>K_iff; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_rmc = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_dvf = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G_iff = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G_iff.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G_iff.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-org8b81fd6" class="outline-3"> <h3 id="org8b81fd6"><span class="section-number-3">3.3</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-3-3"> <div id="org307c8d8" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_iff.png" alt="uniaxial_sensitivity_dist_iff.png" /> </p> <p><span class="figure-number">Figure 9: </span>Sensitivity to disturbance once the IFF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_iff.pdf">pdf</a>)</p> </div> <div id="orgabd6245" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_stages_iff.png" alt="uniaxial_sensitivity_dist_stages_iff.png" /> </p> <p><span class="figure-number">Figure 10: </span>Sensitivity to force disturbances in various stages when IFF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_iff.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_iff.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org80d5d2d" class="outline-3"> <h3 id="org80d5d2d"><span class="section-number-3">3.4</span> Damped Plant</h3> <div class="outline-text-3" id="text-3-4"> <div id="org35f8f43" class="figure"> <p><img src="figs/uniaxial_plant_iff_damped.png" alt="uniaxial_plant_iff_damped.png" /> </p> <p><span class="figure-number">Figure 11: </span>Damped Plant after IFF is applied (<a href="./figs/uniaxial_plant_iff_damped.png">png</a>, <a href="./figs/uniaxial_plant_iff_damped.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orga9ed49c" class="outline-3"> <h3 id="orga9ed49c"><span class="section-number-3">3.5</span> Conclusion</h3> <div class="outline-text-3" id="text-3-5"> <div class="important"> <p> Integral Force Feedback: </p> </div> </div> </div> </div> <div id="outline-container-org5d0bc94" class="outline-2"> <h2 id="org5d0bc94"><span class="section-number-2">4</span> Relative Motion Control</h2> <div class="outline-text-2" id="text-4"> <p> <a id="org5737634"></a> </p> <p> In the Relative Motion Control (RMC), a derivative feedback is applied between the measured actuator displacement to the actuator force input. </p> <div id="org742e0c1" class="figure"> <p><img src="figs/uniaxial-model-nass-flexible-rmc.png" alt="uniaxial-model-nass-flexible-rmc.png" /> </p> <p><span class="figure-number">Figure 12: </span>Uniaxial RMC Control Schematic</p> </div> </div> <div id="outline-container-org4ffacc7" class="outline-3"> <h3 id="org4ffacc7"><span class="section-number-3">4.1</span> Control Design</h3> <div class="outline-text-3" id="text-4-1"> <div class="org-src-container"> <pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Let's look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor. </p> <div id="org9fd5b87" class="figure"> <p><img src="figs/uniaxial_rmc_plant.png" alt="uniaxial_rmc_plant.png" /> </p> <p><span class="figure-number">Figure 13: </span>Transfer function from forces applied in the legs to leg displacement sensor (<a href="./figs/uniaxial_rmc_plant.png">png</a>, <a href="./figs/uniaxial_rmc_plant.pdf">pdf</a>)</p> </div> <p> The Relative Motion Controller is defined below. A Low pass Filter is added to make the controller transfer function proper. </p> <div class="org-src-container"> <pre class="src src-matlab">K_rmc = s<span class="org-type">*</span><span class="org-highlight-numbers-number">50000</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span> <span class="org-type">+</span> s<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">10000</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div id="org7d6a1ae" class="figure"> <p><img src="figs/uniaxial_rmc_open_loop.png" alt="uniaxial_rmc_open_loop.png" /> </p> <p><span class="figure-number">Figure 14: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_rmc_open_loop.png">png</a>, <a href="./figs/uniaxial_rmc_open_loop.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgf86862c" class="outline-3"> <h3 id="orgf86862c"><span class="section-number-3">4.2</span> Identification</h3> <div class="outline-text-3" id="text-4-2"> <p> Let's initialize the system prior to identification. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround<span class="org-rainbow-delimiters-depth-1">()</span>; initializeGranite<span class="org-rainbow-delimiters-depth-1">()</span>; initializeTy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRz<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMicroHexapod<span class="org-rainbow-delimiters-depth-1">()</span>; initializeAxisc<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMirror<span class="org-rainbow-delimiters-depth-1">()</span>; initializeNanoHexapod<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; initializeSample<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> And initialize the controllers. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_iff = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_rmc = <span class="org-type">-</span>K_rmc; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_dvf = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G_rmc = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G_rmc.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G_rmc.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-org0211838" class="outline-3"> <h3 id="org0211838"><span class="section-number-3">4.3</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-4-3"> <div id="org00d0d6e" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_rmc.png" alt="uniaxial_sensitivity_dist_rmc.png" /> </p> <p><span class="figure-number">Figure 15: </span>Sensitivity to disturbance once the RMC controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_rmc.pdf">pdf</a>)</p> </div> <div id="org0006b16" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_stages_rmc.png" alt="uniaxial_sensitivity_dist_stages_rmc.png" /> </p> <p><span class="figure-number">Figure 16: </span>Sensitivity to force disturbances in various stages when RMC is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_rmc.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_rmc.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgefb061f" class="outline-3"> <h3 id="orgefb061f"><span class="section-number-3">4.4</span> Damped Plant</h3> <div class="outline-text-3" id="text-4-4"> <div id="org2092a67" class="figure"> <p><img src="figs/uniaxial_plant_rmc_damped.png" alt="uniaxial_plant_rmc_damped.png" /> </p> <p><span class="figure-number">Figure 17: </span>Damped Plant after RMC is applied (<a href="./figs/uniaxial_plant_rmc_damped.png">png</a>, <a href="./figs/uniaxial_plant_rmc_damped.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org467a5d6" class="outline-3"> <h3 id="org467a5d6"><span class="section-number-3">4.5</span> Conclusion</h3> <div class="outline-text-3" id="text-4-5"> <div class="important"> <p> Relative Motion Control: </p> </div> </div> </div> </div> <div id="outline-container-org408eed0" class="outline-2"> <h2 id="org408eed0"><span class="section-number-2">5</span> Direct Velocity Feedback</h2> <div class="outline-text-2" id="text-5"> <p> <a id="orgfc1ffa1"></a> </p> <p> In the Relative Motion Control (RMC), a feedback is applied between the measured velocity of the platform to the actuator force input. </p> <div id="org070b73d" class="figure"> <p><img src="figs/uniaxial-model-nass-flexible-dvf.png" alt="uniaxial-model-nass-flexible-dvf.png" /> </p> <p><span class="figure-number">Figure 18: </span>Uniaxial DVF Control Schematic</p> </div> </div> <div id="outline-container-org64e7b3f" class="outline-3"> <h3 id="org64e7b3f"><span class="section-number-3">5.1</span> Control Design</h3> <div class="outline-text-3" id="text-5-1"> <div class="org-src-container"> <pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div id="org56e8509" class="figure"> <p><img src="figs/uniaxial_dvf_plant.png" alt="uniaxial_dvf_plant.png" /> </p> <p><span class="figure-number">Figure 19: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_plant.png">png</a>, <a href="./figs/uniaxial_dvf_plant.pdf">pdf</a>)</p> </div> <div class="org-src-container"> <pre class="src src-matlab">K_dvf = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5e4</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div id="orgc80a1c2" class="figure"> <p><img src="figs/uniaxial_dvf_loop_gain.png" alt="uniaxial_dvf_loop_gain.png" /> </p> <p><span class="figure-number">Figure 20: </span>Transfer function from forces applied in the legs to leg velocity sensor (<a href="./figs/uniaxial_dvf_loop_gain.png">png</a>, <a href="./figs/uniaxial_dvf_loop_gain.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orga75fa6d" class="outline-3"> <h3 id="orga75fa6d"><span class="section-number-3">5.2</span> Identification</h3> <div class="outline-text-3" id="text-5-2"> <p> Let's initialize the system prior to identification. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround<span class="org-rainbow-delimiters-depth-1">()</span>; initializeGranite<span class="org-rainbow-delimiters-depth-1">()</span>; initializeTy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRz<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMicroHexapod<span class="org-rainbow-delimiters-depth-1">()</span>; initializeAxisc<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMirror<span class="org-rainbow-delimiters-depth-1">()</span>; initializeNanoHexapod<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; initializeSample<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> And initialize the controllers. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_iff = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_rmc = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_dvf = <span class="org-type">-</span>K_dvf; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial'</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G_dvf = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G_dvf.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G_dvf.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-org0d535fa" class="outline-3"> <h3 id="org0d535fa"><span class="section-number-3">5.3</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-5-3"> <div id="org30e1316" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_dvf.png" alt="uniaxial_sensitivity_dist_dvf.png" /> </p> <p><span class="figure-number">Figure 21: </span>Sensitivity to disturbance once the DVF controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_dvf.pdf">pdf</a>)</p> </div> <div id="orge40e605" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_stages_dvf.png" alt="uniaxial_sensitivity_dist_stages_dvf.png" /> </p> <p><span class="figure-number">Figure 22: </span>Sensitivity to force disturbances in various stages when DVF is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_dvf.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_dvf.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org9643807" class="outline-3"> <h3 id="org9643807"><span class="section-number-3">5.4</span> Damped Plant</h3> <div class="outline-text-3" id="text-5-4"> <div id="org48982d0" class="figure"> <p><img src="figs/uniaxial_plant_dvf_damped.png" alt="uniaxial_plant_dvf_damped.png" /> </p> <p><span class="figure-number">Figure 23: </span>Damped Plant after DVF is applied (<a href="./figs/uniaxial_plant_dvf_damped.png">png</a>, <a href="./figs/uniaxial_plant_dvf_damped.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org6e6fd47" class="outline-3"> <h3 id="org6e6fd47"><span class="section-number-3">5.5</span> Conclusion</h3> <div class="outline-text-3" id="text-5-5"> <div class="important"> <p> Direct Velocity Feedback: </p> </div> </div> </div> </div> <div id="outline-container-orgd792cab" class="outline-2"> <h2 id="orgd792cab"><span class="section-number-2">6</span> With Cedrat Piezo-electric Actuators</h2> <div class="outline-text-2" id="text-6"> </div> <div id="outline-container-org7707a0a" class="outline-3"> <h3 id="org7707a0a"><span class="section-number-3">6.1</span> Identification</h3> <div class="outline-text-3" id="text-6-1"> <p> We identify the dynamics of the system. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial_cedrat'</span>; </pre> </div> <p> The inputs and outputs are defined below and corresponds to the name of simulink blocks. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <p> Finally, we use the <code>linearize</code> Matlab function to extract a state space model from the simscape model. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> </div> </div> <div id="outline-container-orgd921ae7" class="outline-3"> <h3 id="orgd921ae7"><span class="section-number-3">6.2</span> Control Design</h3> <div class="outline-text-3" id="text-6-2"> <p> Let's look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor. </p> <div id="org8bae400" class="figure"> <p><img src="figs/uniaxial_cedrat_plant.png" alt="uniaxial_cedrat_plant.png" /> </p> <p><span class="figure-number">Figure 24: </span>Transfer function from forces applied in the legs to force sensor (<a href="./figs/uniaxial_cedrat_plant.png">png</a>, <a href="./figs/uniaxial_cedrat_plant.pdf">pdf</a>)</p> </div> <p> The controller for each pair of actuator/sensor is: </p> <div class="org-src-container"> <pre class="src src-matlab">K_cedrat = <span class="org-highlight-numbers-number">1000</span><span class="org-type">/</span>s; </pre> </div> <div id="org0e53970" class="figure"> <p><img src="figs/uniaxial_cedrat_open_loop.png" alt="uniaxial_cedrat_open_loop.png" /> </p> <p><span class="figure-number">Figure 25: </span>Loop Gain for the Integral Force Feedback (<a href="./figs/uniaxial_cedrat_open_loop.png">png</a>, <a href="./figs/uniaxial_cedrat_open_loop.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org1d5a39c" class="outline-3"> <h3 id="org1d5a39c"><span class="section-number-3">6.3</span> Identification</h3> <div class="outline-text-3" id="text-6-3"> <p> Let's initialize the system prior to identification. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeGround<span class="org-rainbow-delimiters-depth-1">()</span>; initializeGranite<span class="org-rainbow-delimiters-depth-1">()</span>; initializeTy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRy<span class="org-rainbow-delimiters-depth-1">()</span>; initializeRz<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMicroHexapod<span class="org-rainbow-delimiters-depth-1">()</span>; initializeAxisc<span class="org-rainbow-delimiters-depth-1">()</span>; initializeMirror<span class="org-rainbow-delimiters-depth-1">()</span>; initializeNanoHexapod<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'actuator'</span>, <span class="org-string">'piezo'</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; initializeSample<span class="org-rainbow-delimiters-depth-1">(</span>struct<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> All the controllers are set to 0. </p> <div class="org-src-container"> <pre class="src src-matlab">K = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_iff = <span class="org-type">-</span>K_cedrat; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_iff'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_rmc = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_rmc'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; K_dvf = tf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">)</span>; save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/controllers.mat'</span>, <span class="org-string">'K_dvf'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = <span class="org-highlight-numbers-number">0</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'sim_nano_station_uniaxial_cedrat'</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dw'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Ground Motion</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fs'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied on the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnl'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force applied by the NASS</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdty'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Ty</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fdrz'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'input'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Parasitic force Rz</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dsm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of the sample</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Fnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Force sensor in NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dnlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Displacement of NASS's legs</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">9</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Dgm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Absolute displacement of the granite</span> io<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">10</span><span class="org-rainbow-delimiters-depth-1">)</span> = linio<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>mdl, <span class="org-string">'/Vlm'</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-string">'output'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Measured absolute velocity of the top NASS platform</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G_cedrat = linearize<span class="org-rainbow-delimiters-depth-1">(</span>mdl, io, options<span class="org-rainbow-delimiters-depth-1">)</span>; G_cedrat.InputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'Dw'</span>, ...<span class="org-comment"> % Ground Motion [m]</span> <span class="org-string">'Fs'</span>, ...<span class="org-comment"> % Force Applied on Sample [N]</span> <span class="org-string">'Fn'</span>, ...<span class="org-comment"> % Force applied by NASS [N]</span> <span class="org-string">'Fty'</span>, ...<span class="org-comment"> % Parasitic Force Ty [N]</span> <span class="org-string">'Frz'</span><span class="org-rainbow-delimiters-depth-1">}</span>; <span class="org-comment">% Parasitic Force Rz [N]</span> G_cedrat.OutputName = <span class="org-rainbow-delimiters-depth-1">{</span><span class="org-string">'D'</span>, ...<span class="org-comment"> % Measured sample displacement x.r.t. granite [m]</span> <span class="org-string">'Fnm'</span>, ...<span class="org-comment"> % Force Sensor in NASS [N]</span> <span class="org-string">'Dnm'</span>, ...<span class="org-comment"> % Displacement Sensor in NASS [m]</span> <span class="org-string">'Dgm'</span>, ...<span class="org-comment"> % Asbolute displacement of Granite [m]</span> <span class="org-string">'Vlm'</span><span class="org-rainbow-delimiters-depth-1">}</span>; ...<span class="org-comment"> % Absolute Velocity of NASS [m/s]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G_cedrat'</span>, <span class="org-string">'-append'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-orgb163c6c" class="outline-3"> <h3 id="orgb163c6c"><span class="section-number-3">6.4</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-6-4"> <div id="org6c93b19" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_cedrat.png" alt="uniaxial_sensitivity_dist_cedrat.png" /> </p> <p><span class="figure-number">Figure 26: </span>Sensitivity to disturbance once the CEDRAT controller is applied to the system (<a href="./figs/uniaxial_sensitivity_dist_cedrat.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_cedrat.pdf">pdf</a>)</p> </div> <div id="org1b2d2df" class="figure"> <p><img src="figs/uniaxial_sensitivity_dist_stages_cedrat.png" alt="uniaxial_sensitivity_dist_stages_cedrat.png" /> </p> <p><span class="figure-number">Figure 27: </span>Sensitivity to force disturbances in various stages when CEDRAT is applied (<a href="./figs/uniaxial_sensitivity_dist_stages_cedrat.png">png</a>, <a href="./figs/uniaxial_sensitivity_dist_stages_cedrat.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org552dcab" class="outline-3"> <h3 id="org552dcab"><span class="section-number-3">6.5</span> Damped Plant</h3> <div class="outline-text-3" id="text-6-5"> <div id="orge59303f" class="figure"> <p><img src="figs/uniaxial_plant_cedrat_damped.png" alt="uniaxial_plant_cedrat_damped.png" /> </p> <p><span class="figure-number">Figure 28: </span>Damped Plant after CEDRAT is applied (<a href="./figs/uniaxial_plant_cedrat_damped.png">png</a>, <a href="./figs/uniaxial_plant_cedrat_damped.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org5065aae" class="outline-3"> <h3 id="org5065aae"><span class="section-number-3">6.6</span> Conclusion</h3> <div class="outline-text-3" id="text-6-6"> <div class="important"> <p> This gives similar results than with a classical force sensor. </p> </div> </div> </div> </div> <div id="outline-container-org60dfb12" class="outline-2"> <h2 id="org60dfb12"><span class="section-number-2">7</span> Comparison of Active Damping Techniques</h2> <div class="outline-text-2" id="text-7"> <p> <a id="orgc7002a8"></a> </p> </div> <div id="outline-container-org249a650" class="outline-3"> <h3 id="org249a650"><span class="section-number-3">7.1</span> Load the plants</h3> <div class="outline-text-3" id="text-7-1"> <div class="org-src-container"> <pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./uniaxial/mat/plants.mat'</span>, <span class="org-string">'G'</span>, <span class="org-string">'G_iff'</span>, <span class="org-string">'G_rmc'</span>, <span class="org-string">'G_dvf'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> </div> </div> <div id="outline-container-org0c1cccb" class="outline-3"> <h3 id="org0c1cccb"><span class="section-number-3">7.2</span> Sensitivity to Disturbance</h3> <div class="outline-text-3" id="text-7-2"> <div id="org9992967" class="figure"> <p><img src="figs/uniaxial_sensitivity_ground_motion.png" alt="uniaxial_sensitivity_ground_motion.png" /> </p> <p><span class="figure-number">Figure 29: </span>Sensitivity to Ground Motion - Comparison (<a href="./figs/uniaxial_sensitivity_ground_motion.png">png</a>, <a href="./figs/uniaxial_sensitivity_ground_motion.pdf">pdf</a>)</p> </div> <div id="orgc7a133b" class="figure"> <p><img src="figs/uniaxial_sensitivity_direct_force.png" alt="uniaxial_sensitivity_direct_force.png" /> </p> <p><span class="figure-number">Figure 30: </span>Sensitivity to disturbance - Comparison (<a href="./figs/uniaxial_sensitivity_direct_force.png">png</a>, <a href="./figs/uniaxial_sensitivity_direct_force.pdf">pdf</a>)</p> </div> <div id="org8eaf52e" class="figure"> <p><img src="figs/uniaxial_sensitivity_fty.png" alt="uniaxial_sensitivity_fty.png" /> </p> <p><span class="figure-number">Figure 31: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_fty.png">png</a>, <a href="./figs/uniaxial_sensitivity_fty.pdf">pdf</a>)</p> </div> <div id="orgb554437" class="figure"> <p><img src="figs/uniaxial_sensitivity_frz.png" alt="uniaxial_sensitivity_frz.png" /> </p> <p><span class="figure-number">Figure 32: </span>Sensitivity to force disturbances - Comparison (<a href="./figs/uniaxial_sensitivity_frz.png">png</a>, <a href="./figs/uniaxial_sensitivity_frz.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgb54c9e3" class="outline-3"> <h3 id="orgb54c9e3"><span class="section-number-3">7.3</span> Damped Plant</h3> <div class="outline-text-3" id="text-7-3"> <div id="org9375b1e" class="figure"> <p><img src="figs/uniaxial_plant_damped_comp.png" alt="uniaxial_plant_damped_comp.png" /> </p> <p><span class="figure-number">Figure 33: </span>Damped Plant - Comparison (<a href="./figs/uniaxial_plant_damped_comp.png">png</a>, <a href="./figs/uniaxial_plant_damped_comp.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org1c67523" class="outline-3"> <h3 id="org1c67523"><span class="section-number-3">7.4</span> Conclusion</h3> <div class="outline-text-3" id="text-7-4"> <p> #name: tab:active<sub>damping</sub><sub>comparison</sub> </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 1:</span> Comparison of proposed active damping techniques</caption> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left">IFF</th> <th scope="col" class="org-left">RMC</th> <th scope="col" class="org-left">DVF</th> </tr> </thead> <tbody> <tr> <td class="org-left">Sensor Type</td> <td class="org-left">Force sensor</td> <td class="org-left">Relative Motion</td> <td class="org-left">Inertial</td> </tr> <tr> <td class="org-left">Guaranteed Stability</td> <td class="org-left">+</td> <td class="org-left">+</td> <td class="org-left">-</td> </tr> <tr> <td class="org-left">Sensitivity (\(D_w\))</td> <td class="org-left">-</td> <td class="org-left">+</td> <td class="org-left">-</td> </tr> <tr> <td class="org-left">Sensitivity (\(F_s\))</td> <td class="org-left">- (at low freq)</td> <td class="org-left">+</td> <td class="org-left">+</td> </tr> <tr> <td class="org-left">Sensitivity (\(F_{ty,rz}\))</td> <td class="org-left">+</td> <td class="org-left">-</td> <td class="org-left">+</td> </tr> </tbody> </table> <div class="important"> <p> The next step is to take into account the power spectral density of each disturbance. </p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2019-10-28 lun. 17:34</p> <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> </div> </body> </html>