#+TITLE: Determination of the optimal nano-hexapod's stiffness
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
:END:
* Introduction :ignore:
As shown before, many parameters other than the nano-hexapod itself do influence the plant dynamics:
- The micro-station compliance (studied [[file:uncertainty_support.org][here]])
- The payload mass and dynamical properties (studied [[file:uncertainty_payload.org][here]] and [[file:uncertainty_experiment.org][here]])
- The experimental conditions, mainly the spindle rotation speed (studied [[file:uncertainty_experiment.org][here]])
As seen before, the stiffness of the nano-hexapod greatly influence the effect of such parameters.
We wish here to see if we can determine an optimal stiffness of the nano-hexapod such that:
- Section [[sec:spindle_rotation_speed]]: the change of its dynamics due to the spindle rotation speed is acceptable
- Section [[sec:micro_station_compliance]]: the support compliance dynamics is not much present in the nano-hexapod dynamics
- Section [[sec:payload_impedance]]: the change of payload impedance has acceptable effect on the plant dynamics
The overall goal is to design a nano-hexapod that will allow the highest possible control bandwidth.
* Spindle Rotation Speed
<>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open('nass_model.slx')
#+end_src
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
The worst case scenario is a rotation speed of 60rpm with a payload mass of 1Kg.
#+begin_src matlab
initializeSample('mass', 10);
#+end_src
We don't include gravity nor disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', false);
initializeDisturbances('enable', false);
#+end_src
We set the controller type to Open-Loop, and we do not need to log any signal.
#+begin_src matlab
initializeController('type', 'stabilizing');
initializeLoggingConfiguration('log', 'none');
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
#+end_src
** Identification when not rotating
We set the range of stiffness that we want to use.
#+begin_src matlab
Ks = logspace(3,9,7)
#+end_src
#+begin_src matlab
initializeReferences();
#+end_src
#+begin_src matlab
Gk_iff = {zeros(length(Ks))};
Gk_dvf = {zeros(length(Ks))};
Gk_err = {zeros(length(Ks))};
#+end_src
#+begin_src matlab
for i = 1:length(Ks)
initializeNanoHexapod('k', Ks(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gk_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gk_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gk_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
#+end_src
** Identification when rotating at maximum speed
#+begin_src matlab
Rz_rpm = 60;
initializeReferences('Rz_type', 'rotating', ...
'Rz_period', 60/Rz_rpm, ... % Rotation period [s]
'Rz_amplitude', -0.2*(2*pi*Rz_rpm/60)); % Angle offset [rad]
load('mat/nass_references.mat', 'Rz'); % We load the reference for the Spindle
[~, i_end] = min(abs(Rz.signals.values)); % Obtain the indice where the spindle angle is zero
t_sim = Rz.time(i_end); % Simulation time before identification [s]
#+end_src
#+begin_src matlab
k_sta = -1e8;
#+end_src
#+begin_src matlab
Gk_wz_iff = {zeros(length(Ks))};
Gk_wz_dvf = {zeros(length(Ks))};
Gk_wz_err = {zeros(length(Ks))};
#+end_src
#+begin_src matlab
for i = 1:length(Ks)
initializeNanoHexapod('k', Ks(i));
%% Run the linearization
G = linearize(mdl, io, t_sim);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gk_wz_iff(i) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gk_wz_dvf(i) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gk_wz_err(i) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
#+end_src
#+begin_src matlab
save('mat/optimal_stiffness_Gk_wz.mat', 'Ks', ...
'Gk_iff', 'Gk_dvf', 'Gk_err', ...
'Gk_wz_iff', 'Gk_wz_dvf', 'Gk_wz_err');
#+end_src
** Change of dynamics
#+begin_src matlab :exports none
load('mat/optimal_stiffness_Gk_wz.mat');
#+end_src
Change of dynamics for decentralized IFF control.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Gk_iff)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_iff{i}( 'Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
title('Soft Nano-Hexapod');
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Gk_iff)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_wz_iff{i}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Change of dynamics from $F_x$ to $D_x$.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_err{i}( 'Ex', 'Fx'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_wz_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Change of dynamics from $F_z$ to $D_z$.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_err{i}( 'Ez', 'Fz'), freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title('Soft Nano-Hexapod');
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*angle(squeeze(freqresp(Gk_wz_err{i}('Ez', 'Fz'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
** Change of coupling
#+begin_src matlab :exports none
load('mat/optimal_stiffness_Gk_wz.mat');
#+end_src
Change of coupling from $F_x$ to $D_y$ when not rotating and when rotating at 60rpm.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_err{i}( 'Ey', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i}('Ey', 'Fx'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
#+end_src
Comparison of the coupling from $F_x$ to $D_y$ when rotating at 60rpm to the direct term $F_x$ to $D_x$.
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
hold on;
for i = 1:length(Gk_err)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gk_wz_err{i}('Ey', 'Fx'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast');
#+end_src
** Conclusion :ignore:
#+begin_important
The leg stiffness should be at higher than $k_i = 10^4\ [N/m]$ such that the main resonance frequency does not shift too much when rotating.
For the coupling, it is more difficult to conclude about the minimum required leg stiffness.
#+end_important
#+begin_notes
Note that we can use very soft nano-hexapod if we limit the spindle rotating speed.
#+end_notes
* Micro-Station Compliance Effect
<>
** Introduction :ignore:
- take the 6dof compliance of the micro-station
- simple model + uncertainty
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open('nass_model.slx')
#+end_src
** Conclusion :ignore:
* Payload "Impedance" Effect
<>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open('nass_model.slx')
#+end_src
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
We don't include gravity nor disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics.
#+begin_src matlab
initializeSimscapeConfiguration('gravity', false);
initializeDisturbances('enable', false);
#+end_src
We set the controller type to Open-Loop, and we do not need to log any signal.
#+begin_src matlab
initializeController('type', 'stabilizing');
initializeLoggingConfiguration('log', 'none');
#+end_src
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1;
#+end_src
** Change of payload dynamics
- Change of mass: from 1kg to 50kg
- Change of resonance frequency: from 50Hz to 500Hz
- The damping ratio of the payload is fixed to $\xi = 0.2$
#+begin_src matlab
initializeReferences();
Ks = logspace(3,9,7) % [N/m]
#+end_src
#+begin_src matlab
Ms = [1, 20, 50]; % [Kg]
#+end_src
#+begin_src matlab
Gm_iff = {zeros(length(Ks), length(Ms))};
Gm_dvf = {zeros(length(Ks), length(Ms))};
Gm_err = {zeros(length(Ks), length(Ms))};
#+end_src
#+begin_src matlab
for i = 1:length(Ks)
for j = 1:length(Ms)
initializeNanoHexapod('k', Ks(i));
initializeSample('mass', Ms(j), 'freq', 100*ones(6,1));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gm_iff(i,j) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gm_dvf(i,j) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gm_err(i,j) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
end
#+end_src
#+begin_src matlab
Fs = [50, 200, 500]; % [Hz]
#+end_src
#+begin_src matlab
Gf_iff = {zeros(length(Ks), length(Fs))};
Gf_dvf = {zeros(length(Ks), length(Fs))};
Gf_err = {zeros(length(Ks), length(Fs))};
#+end_src
#+begin_src matlab
for i = 1:length(Ks)
for j = 1:length(Fs)
initializeNanoHexapod('k', Ks(i));
initializeSample('mass', 20, 'freq', Fs(j)*ones(6,1));
G = linearize(mdl, io);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gf_iff(i,j) = {minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Gf_dvf(i,j) = {minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))};
Jinvt = tf(inv(nano_hexapod.J)');
Jinvt.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Jinvt.OutputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
Gf_err(i,j) = {-minreal(G({'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}))*Jinvt};
end
end
#+end_src
#+begin_src matlab
save('mat/optimal_stiffness_Gm_Gf.mat', 'Ks', 'Ms', 'Fs', ...
'Gm_iff', 'Gm_dvf', 'Gm_err', ...
'Gf_iff', 'Gf_dvf', 'Gf_err');
#+end_src
** Plots
** Change of optimal gain for decentralized control
For each payload, compute the optimal gain for the IFF control.
The optimal value corresponds to critical damping to *all* the 6 modes of the nano-hexapod.
#+begin_src matlab
load('mat/optimal_stiffness_Gm_Gf.mat');
#+end_src
Change of Mass
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Change of payload resonance frequency
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_iff{i,j}('Fnlm1', 'Fnl1'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
** Change of dynamics for the primary controller
For each stiffness, plot the total spread of dynamics.
#+begin_src matlab
load('mat/optimal_stiffness_Gm_Gf.mat');
#+end_src
*** Frequency variation
Same payload mass, but different stiffness resulting in different resonance frequency.
All curves
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Fs)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
X direction
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Z direction:
We can see two mass lines for the soft nano-hexapod:
- The first mass line corresponds to $\frac{1}{(m_n + m_p)s^2}$ where $m_p = 20\ [kg]$ is the mass of the payload and $m_n = 15\ [Kg]$ is the mass of the nano-hexapod top platform and attached mirror
- The second mass line corresponds to $\frac{1}{m_n s^2}$
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$\\omega_0 = %.0f$ [Hz]', Fs(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
*** Mass variation
All mixed, X direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
All mixed, Z direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:length(Ks)
for j = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
if j == 1
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$K = %.0e$ [N/m]', Ks(i)));
else
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'HandleVisibility', 'off');
end
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
Z direction
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
figure;
i = 1;
ax1 = subplot(2, 2, 1);
hold on;
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 3);
hold on;
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
i = 7;
ax1 = subplot(2, 2, 2);
hold on;
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
title(sprintf('$k = %.0e$ [N/m]', Ks(i)))
ax2 = subplot(2, 2, 4);
hold on;
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ez', 'Fz'), freqs, 'Hz'))), '-', ...
'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(j)));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
*** Total variation
Total change of dynamics due to change of the payload:
- mass from 1kg to 50kg
- main resonance from 50Hz to 500Hz
For a soft nano-hexapod
#+begin_src matlab :exports none
i = 1;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
For a stiff nano-hexapod
#+begin_src matlab :exports none
i = 7;
freqs = logspace(-1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for j = 1:length(Fs)
plot(freqs, abs(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
for j = 1:length(Ms)
plot(freqs, abs(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for j = 1:length(Fs)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
for j = 1:length(Ms)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gm_err{i,j}('Ex', 'Fx'), freqs, 'Hz'))), 'k-');
end
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
** Conclusion :ignore: