#+TITLE: Identification :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Introduction :ignore: The goal here is to tune the Simscape model of the station in order to have a good dynamical representation of the real system. In order to do so, we reproduce the Modal Analysis done on the station using the Simscape model. We can then compare the measured Frequency Response Functions with the identified dynamics of the model. Finally, this should help to tune the parameters of the model such that the dynamics is closer to the measured FRF. * Identification of the Micro-Station :noexport: ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src ** Compute the transfer functions We first define some parameters for the identification. The simulink file for the identification is =sim_micro_station_id.slx=. #+begin_src matlab open('identification/matlab/sim_micro_station_id.slx') #+end_src #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_micro_station_id'; #+end_src #+begin_src matlab %% Micro-Hexapod % Input/Output definition io(1) = linio([mdl, '/Micro-Station/Fm_ext'],1,'openinput'); io(2) = linio([mdl, '/Micro-Station/Fg_ext'],1,'openinput'); io(3) = linio([mdl, '/Micro-Station/Dm_inertial'],1,'output'); io(4) = linio([mdl, '/Micro-Station/Ty_inertial'],1,'output'); io(5) = linio([mdl, '/Micro-Station/Ry_inertial'],1,'output'); io(6) = linio([mdl, '/Micro-Station/Dg_inertial'],1,'output'); #+end_src #+begin_src matlab % Run the linearization G_ms = linearize(mdl, io, 0); % Input/Output names G_ms.InputName = {'Fmx', 'Fmy', 'Fmz',... 'Fgx', 'Fgy', 'Fgz'}; G_ms.OutputName = {'Dmx', 'Dmy', 'Dmz', ... 'Tyx', 'Tyy', 'Tyz', ... 'Ryx', 'Ryy', 'Ryz', ... 'Dgx', 'Dgy', 'Dgz'}; #+end_src #+begin_src matlab %% Save the obtained transfer functions save('./mat/id_micro_station.mat', 'G_ms'); #+end_src ** Plots the transfer functions ** Compare with the measurements * Modal Analysis of the Micro-Station :noexport: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src ** Simscape Model #+begin_src matlab open('identification/matlab/sim_micro_station_modal_analysis.slx') #+end_src #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_micro_station_modal_analysis'; #+end_src #+begin_src matlab %% Micro-Hexapod % Input/Output definition io(1) = linio([mdl, '/Micro-Station/F_hammer'],1,'openinput'); io(2) = linio([mdl, '/Micro-Station/acc9'],1,'output'); io(3) = linio([mdl, '/Micro-Station/acc10'],1,'output'); io(4) = linio([mdl, '/Micro-Station/acc11'],1,'output'); io(5) = linio([mdl, '/Micro-Station/acc12'],1,'output'); #+end_src #+begin_src matlab % Run the linearization G_ms = linearize(mdl, io, 0); % Input/Output names G_ms.InputName = {'Fx', 'Fy', 'Fz'}; G_ms.OutputName = {'x9', 'y9', 'z9', ... 'x10', 'y10', 'z10', ... 'x11', 'y11', 'z11', ... 'x12', 'y12', 'z12'}; #+end_src ** Plot Results #+begin_src matlab figure; hold on; plot(freqs, abs(squeeze(freqresp(G_ms('x9', 'Fx'), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); hold off; #+end_src ** Compare with measurements #+begin_src matlab load('../meas/modal-analysis/mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs'); #+end_src #+begin_src matlab dirs = {'x', 'y', 'z'}; n_acc = 9; n_dir = 1; % x, y, z n_exc = 1; % x, y, z figure; hold on; plot(freqs, abs(squeeze(FRFs(3*(n_acc-1) + n_dir, n_exc, :)))./((2*pi*freqs).^2)'); plot(freqs, abs(squeeze(freqresp(G_ms([dirs{n_dir}, num2str(n_acc)], ['F', dirs{n_dir}]), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); hold off; #+end_src * Some notes about the Simscape Model The Simscape Model of the micro-station consists of several solid bodies: - Bottom Granite - Top Granite - Translation Stage - Tilt Stage - Spindle - Hexapod Each solid body has some characteristics: Center of Mass, mass, moment of inertia, etc... These parameters are automatically computed from the geometry and from the density of the materials. Then, the solid bodies are connected with springs and dampers. Some of the springs and dampers values can be estimated from the joints/stages specifications, however, we here prefer to tune these values based on the measurements. * Compare with measurements at the CoM of each element ** Introduction :ignore: [[file:../../meas/modal-analysis/index.org][here]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src ** Prepare the Simulation We load the configuration. #+begin_src matlab load('mat/conf_simscape.mat'); #+end_src We set a small =StopTime=. #+begin_src matlab set_param(conf_simscape, 'StopTime', '0.5'); #+end_src We initialize all the stages. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeNanoHexapod(struct('actuator', 'piezo')); initializeSample(struct('mass', 50)); #+end_src ** Estimate the position of the CoM of each solid and compare with the one took for the Measurement Analysis #+begin_src matlab open('identification/matlab/sim_micro_station_com.slx') #+end_src Thanks to the [[https://fr.mathworks.com/help/physmod/sm/ref/inertiasensor.html][Inertia Sensor]] simscape block, it is possible to estimate the position of the Center of Mass of a solid body with respect to a defined frame. #+begin_src matlab sim('sim_micro_station_com') #+end_src The results are shown in the table [[tab:com_simscape]]. #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) stages_com = 1e3*[granite_bot_com.Data(end, :) ; granite_top_com.Data(end, :) ; ty_com.Data(end, :) ; ry_com.Data(end, :) ; rz_com.Data(end, :) ; hexa_com.Data(end, :) ]'; data2orgtable(stages_com, {'X [mm]', 'Y [mm]', 'Z [mm]'}, {'granite bot', 'granite top', 'ty', 'ry', 'rz', 'hexa'}, ' %.1f '); #+end_src #+name: tab:com_simscape #+caption: Center of Mass of each solid body as defined in Simscape #+RESULTS: | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+--------+--------+--------+--------| | X [mm] | 52.4 | 51.7 | 0.9 | -0.1 | 0.0 | -0.0 | | Y [mm] | 190.4 | 263.2 | 0.7 | 5.2 | -0.0 | 0.1 | | Z [mm] | -1200.0 | -777.1 | -598.9 | -627.7 | -643.2 | -317.1 | We can compare the obtained center of mass (table [[tab:com_simscape]]) with the one used for the Modal Analysis shown in table [[tab:com_solidworks]]. #+name: tab:com_solidworks #+caption: Estimated Center of Mass of each solid body using Solidworks | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+------+------+------+------| | X [mm] | 45 | 52 | 0 | 0 | 0 | -4 | | Y [mm] | 144 | 258 | 14 | -5 | 0 | 6 | | Z [mm] | -1251 | -778 | -600 | -628 | -580 | -319 | The results are quite similar. The differences can be explained by some differences in the chosen density of the materials or by the fact that not exactly all the same elements have been chosen for each stage. For instance, on simscape, the fixed part of the translation stage counts for the top granite solid body. However, in SolidWorks, this has probably not be included with the top granite. ** Create a frame at the CoM of each solid body Now we use one =inertiasensor= block connected on each solid body that measured the center of mass of this solid with respect to the same connected frame. We do that in order to position an accelerometer on the Simscape model at this particular point. #+begin_src matlab open('identification/matlab/sim_micro_station_com_estimation.slx') #+end_src #+begin_src matlab sim('sim_micro_station_com_estimation') #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) stages_com = 1e3*[granite_bot_com.Data(end, :) ; granite_top_com.Data(end, :) ; ty_com.Data(end, :) ; ry_com.Data(end, :) ; rz_com.Data(end, :) ; hexa_com.Data(end, :) ]'; data2orgtable(stages_com, {'X [mm]', 'Y [mm]', 'Z [mm]'}, {'granite bot', 'granite top', 'ty', 'ry', 'rz', 'hexa'}, ' %.1f '); #+end_src #+RESULTS: | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+-------+--------+-------+-------| | X [mm] | 0.0 | 51.7 | 0.9 | -0.1 | 0.0 | -0.0 | | Y [mm] | 0.0 | 753.2 | 0.7 | 5.2 | -0.0 | 0.1 | | Z [mm] | -250.0 | 22.9 | -17.1 | -146.5 | -23.2 | -47.1 | We now same this for further use: #+begin_src matlab granite_bot_com = granite_bot_com.Data(end, :)'; granite_top_com = granite_top_com.Data(end, :)'; ty_com = ty_com.Data(end, :)'; ry_com = ry_com.Data(end, :)'; rz_com = rz_com.Data(end, :)'; hexa_com = hexa_com.Data(end, :)'; save('mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com'); #+end_src Then, we use the obtained results to add a =rigidTransform= block in order to create a new frame at the center of mass of each solid body. ** Identification of the dynamics of the Simscape Model We now use a new Simscape Model where 6DoF inertial sensors are located at the Center of Mass of each solid body. #+begin_src matlab load('mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com'); #+end_src #+begin_src matlab open('identification/matlab/sim_micro_station_modal_analysis_com.slx') #+end_src We use the =linearize= function in order to estimate the dynamics from forces applied on the Translation stage at the same position used for the real modal analysis to the inertial sensors. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_micro_station_modal_analysis_com'; #+end_src #+begin_src matlab %% Micro-Hexapod % Input/Output definition io(1) = linio([mdl, '/F_hammer'],1,'openinput'); io(2) = linio([mdl, '/acc_gtop'],1,'output'); io(3) = linio([mdl, '/acc_ty'],1,'output'); io(4) = linio([mdl, '/acc_ry'],1,'output'); io(5) = linio([mdl, '/acc_rz'],1,'output'); io(6) = linio([mdl, '/acc_hexa'],1,'output'); #+end_src #+begin_src matlab % Run the linearization G_ms = linearize(mdl, io, 0); % Input/Output names G_ms.InputName = {'Fx', 'Fy', 'Fz'}; G_ms.OutputName = {'gtop_x', 'gtop_y', 'gtop_z', 'gtop_rx', 'gtop_ry', 'gtop_rz', ... 'ty_x', 'ty_y', 'ty_z', 'ty_rx', 'ty_ry', 'ty_rz', ... 'ry_x', 'ry_y', 'ry_z', 'ry_rx', 'ry_ry', 'ry_rz', ... 'rz_x', 'rz_y', 'rz_z', 'rz_rx', 'rz_ry', 'rz_rz', ... 'hexa_x', 'hexa_y', 'hexa_z', 'hexa_rx', 'hexa_ry', 'hexa_rz'}; #+end_src The output of =G_ms= is the acceleration of each solid body. In order to obtain a displacement, we divide the obtained transfer function by $1/s^{2}$; #+begin_src matlab G_ms = G_ms/s^2; #+end_src ** Compare with measurements We now load the Frequency Response Functions measurements during the Modal Analysis (accessible [[file:../../meas/modal-analysis/index.org][here]]). #+begin_src matlab load('../meas/modal-analysis/mat/frf_coh_matrices.mat', 'freqs'); load('../meas/modal-analysis/mat/frf_com.mat', 'FRFs_CoM'); #+end_src We then compare the measurements with the identified transfer functions using the Simscape Model. #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'} n_stg = 3; n_dir = 6; % x, y, z, Rx, Ry, Rz n_exc = 2; % x, y, z f = logspace(0, 3, 1000); figure; hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg-1) + n_dir, n_exc, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); hold off; xlim([1, 200]); #+end_src #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'gtop', 'ty', 'ry', 'rz', 'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1:2 for n_dir = 1:3 subplot(3, 2, (n_dir-1)*2 + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_bot_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_bot_stages #+CAPTION: caption ([[./figs/identification_comp_bot_stages.png][png]], [[./figs/identification_comp_bot_stages.pdf][pdf]]) [[file:figs/identification_comp_bot_stages.png]] #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'ry', 'rz', 'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1:2 for n_dir = 1:3 subplot(3, 2, (n_dir-1)*2 + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+2) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_mid_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_mid_stages #+CAPTION: caption ([[./figs/identification_comp_mid_stages.png][png]], [[./figs/identification_comp_mid_stages.pdf][pdf]]) [[file:figs/identification_comp_mid_stages.png]] #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1 for n_dir = 1:3 subplot(3, 1, (n_dir-1) + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+4) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_top_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_top_stages #+CAPTION: caption ([[./figs/identification_comp_top_stages.png][png]], [[./figs/identification_comp_top_stages.pdf][pdf]]) [[file:figs/identification_comp_top_stages.png]] * Conclusion #+begin_important For such a complex system, we believe that the Simscape Model represents the dynamics of the system with enough fidelity. #+end_important