Matlab Functions used for the NASS Project
Table of Contents
1 Functions
1.1 computePsdDispl
This Matlab function is accessible here.
function [psd_object] = computePsdDispl(sys_data, t_init, n_av) i_init = find(sys_data.time > t_init, 1); han_win = hanning(ceil(length(sys_data.Dx(i_init:end, :))/n_av)); Fs = 1/sys_data.time(2); [pdx, f] = pwelch(sys_data.Dx(i_init:end, :), han_win, [], [], Fs); [pdy, ~] = pwelch(sys_data.Dy(i_init:end, :), han_win, [], [], Fs); [pdz, ~] = pwelch(sys_data.Dz(i_init:end, :), han_win, [], [], Fs); [prx, ~] = pwelch(sys_data.Rx(i_init:end, :), han_win, [], [], Fs); [pry, ~] = pwelch(sys_data.Ry(i_init:end, :), han_win, [], [], Fs); [prz, ~] = pwelch(sys_data.Rz(i_init:end, :), han_win, [], [], Fs); psd_object = struct(... 'f', f, ... 'dx', pdx, ... 'dy', pdy, ... 'dz', pdz, ... 'rx', prx, ... 'ry', pry, ... 'rz', prz); end
1.2 computeSetpoint
This Matlab function is accessible here.
function setpoint = computeSetpoint(ty, ry, rz) %% setpoint = zeros(6, 1); %% Ty Ty = [1 0 0 0 ; 0 1 0 ty ; 0 0 1 0 ; 0 0 0 1 ]; % Tyinv = [1 0 0 0 ; % 0 1 0 -ty ; % 0 0 1 0 ; % 0 0 0 1 ]; %% Ry Ry = [ cos(ry) 0 sin(ry) 0 ; 0 1 0 0 ; -sin(ry) 0 cos(ry) 0 ; 0 0 0 1 ]; % TMry = Ty*Ry*Tyinv; %% Rz Rz = [cos(rz) -sin(rz) 0 0 ; sin(rz) cos(rz) 0 0 ; 0 0 1 0 ; 0 0 0 1 ]; % TMrz = Ty*TMry*Rz*TMry'*Tyinv; %% All stages % TM = TMrz*TMry*Ty; TM = Ty*Ry*Rz; [thetax, thetay, thetaz] = RM2angle(TM(1:3, 1:3)); setpoint(1:3) = TM(1:3, 4); setpoint(4:6) = [thetax, thetay, thetaz]; %% Custom Functions function [thetax, thetay, thetaz] = RM2angle(R) if abs(abs(R(3, 1)) - 1) > 1e-6 % R31 != 1 and R31 != -1 thetay = -asin(R(3, 1)); thetax = atan2(R(3, 2)/cos(thetay), R(3, 3)/cos(thetay)); thetaz = atan2(R(2, 1)/cos(thetay), R(1, 1)/cos(thetay)); else thetaz = 0; if abs(R(3, 1)+1) < 1e-6 % R31 = -1 thetay = pi/2; thetax = thetaz + atan2(R(1, 2), R(1, 3)); else thetay = -pi/2; thetax = -thetaz + atan2(-R(1, 2), -R(1, 3)); end end end end
1.3 converErrorBasis
This Matlab function is accessible here.
function error_nass = convertErrorBasis(pos, setpoint, ty, ry, rz) % convertErrorBasis - % % Syntax: convertErrorBasis(p_error, ty, ry, rz) % % Inputs: % - p_error - Position error of the sample w.r.t. the granite [m, rad] % - ty - Measured translation of the Ty stage [m] % - ry - Measured rotation of the Ry stage [rad] % - rz - Measured rotation of the Rz stage [rad] % % Outputs: % - P_nass - Position error of the sample w.r.t. the NASS base [m] % - R_nass - Rotation error of the sample w.r.t. the NASS base [rad] % % Example: % %% If line vector => column vector if size(pos, 2) == 6 pos = pos'; end if size(setpoint, 2) == 6 setpoint = setpoint'; end %% Position of the sample in the frame fixed to the Granite P_granite = [pos(1:3); 1]; % Position [m] R_granite = [setpoint(1:3); 1]; % Reference [m] %% Transformation matrices of the stages % T-y TMty = [1 0 0 0 ; 0 1 0 ty ; 0 0 1 0 ; 0 0 0 1 ]; % R-y TMry = [ cos(ry) 0 sin(ry) 0 ; 0 1 0 0 ; -sin(ry) 0 cos(ry) 0 ; 0 0 0 1 ]; % R-z TMrz = [cos(rz) -sin(rz) 0 0 ; sin(rz) cos(rz) 0 0 ; 0 0 1 0 ; 0 0 0 1 ]; %% Compute Point coordinates in the new reference fixed to the NASS base % P_nass = TMrz*TMry*TMty*P_granite; P_nass = TMrz\TMry\TMty\P_granite; R_nass = TMrz\TMry\TMty\R_granite; dx = R_nass(1)-P_nass(1); dy = R_nass(2)-P_nass(2); dz = R_nass(3)-P_nass(3); %% Compute new basis vectors linked to the NASS base % ux_nass = TMrz*TMry*TMty*[1; 0; 0; 0]; % ux_nass = ux_nass(1:3); % uy_nass = TMrz*TMry*TMty*[0; 1; 0; 0]; % uy_nass = uy_nass(1:3); % uz_nass = TMrz*TMry*TMty*[0; 0; 1; 0]; % uz_nass = uz_nass(1:3); ux_nass = TMrz\TMry\TMty\[1; 0; 0; 0]; ux_nass = ux_nass(1:3); uy_nass = TMrz\TMry\TMty\[0; 1; 0; 0]; uy_nass = uy_nass(1:3); uz_nass = TMrz\TMry\TMty\[0; 0; 1; 0]; uz_nass = uz_nass(1:3); %% Rotations error w.r.t. granite Frame % Rotations error w.r.t. granite Frame rx_nass = pos(4); ry_nass = pos(5); rz_nass = pos(6); % Rotation matrices of the Sample w.r.t. the Granite Mrx_error = [1 0 0 ; 0 cos(-rx_nass) -sin(-rx_nass) ; 0 sin(-rx_nass) cos(-rx_nass)]; Mry_error = [ cos(-ry_nass) 0 sin(-ry_nass) ; 0 1 0 ; -sin(-ry_nass) 0 cos(-ry_nass)]; Mrz_error = [cos(-rz_nass) -sin(-rz_nass) 0 ; sin(-rz_nass) cos(-rz_nass) 0 ; 0 0 1]; % Rotation matrix of the Sample w.r.t. the Granite Mr_error = Mrz_error*Mry_error*Mrx_error; %% Use matrix to solve R = Mr_error/[ux_nass, uy_nass, uz_nass]; % Rotation matrix from NASS base to Sample [thetax, thetay, thetaz] = RM2angle(R); error_nass = [dx; dy; dz; thetax; thetay; thetaz]; %% Custom Functions function [thetax, thetay, thetaz] = RM2angle(R) if abs(abs(R(3, 1)) - 1) > 1e-6 % R31 != 1 and R31 != -1 thetay = -asin(R(3, 1)); % thetaybis = pi-thetay; thetax = atan2(R(3, 2)/cos(thetay), R(3, 3)/cos(thetay)); % thetaxbis = atan2(R(3, 2)/cos(thetaybis), R(3, 3)/cos(thetaybis)); thetaz = atan2(R(2, 1)/cos(thetay), R(1, 1)/cos(thetay)); % thetazbis = atan2(R(2, 1)/cos(thetaybis), R(1, 1)/cos(thetaybis)); else thetaz = 0; if abs(R(3, 1)+1) < 1e-6 % R31 = -1 thetay = pi/2; thetax = thetaz + atan2(R(1, 2), R(1, 3)); else thetay = -pi/2; thetax = -thetaz + atan2(-R(1, 2), -R(1, 3)); end end end end
1.4 generateDiagPidControl
This Matlab function is accessible here.
function [K] = generateDiagPidControl(G, fs) %% pid_opts = pidtuneOptions(... 'PhaseMargin', 50, ... 'DesignFocus', 'disturbance-rejection'); %% K = tf(zeros(6)); for i = 1:6 input_name = G.InputName(i); output_name = G.OutputName(i); K(i, i) = tf(pidtune(minreal(G(output_name, input_name)), 'PIDF', 2*pi*fs, pid_opts)); end K.InputName = G.OutputName; K.OutputName = G.InputName; end
1.5 identifyPlant
This Matlab function is accessible here.
function [sys] = identifyPlant(opts_param) %% Default values for opts opts = struct(); %% Populate opts with input parameters if exist('opts_param','var') for opt = fieldnames(opts_param)' opts.(opt{1}) = opts_param.(opt{1}); end end %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_nano_station_id'; %% Input/Output definition io(1) = linio([mdl, '/Fn'], 1, 'input'); % Cartesian forces applied by NASS io(2) = linio([mdl, '/Dw'], 1, 'input'); % Ground Motion io(3) = linio([mdl, '/Fs'], 1, 'input'); % External forces on the sample io(4) = linio([mdl, '/Fnl'], 1, 'input'); % Forces applied on the NASS's legs io(5) = linio([mdl, '/Fd'], 1, 'input'); % Disturbance Forces io(6) = linio([mdl, '/Dsm'], 1, 'output'); % Displacement of the sample io(7) = linio([mdl, '/Fnlm'], 1, 'output'); % Force sensor in NASS's legs io(8) = linio([mdl, '/Dnlm'], 1, 'output'); % Displacement of NASS's legs io(9) = linio([mdl, '/Es'], 1, 'output'); % Position Error w.r.t. NASS base io(10) = linio([mdl, '/Vlm'], 1, 'output'); % Measured absolute velocity of the legs %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz', ... 'Dgx', 'Dgy', 'Dgz', ... 'Fsx', 'Fsy', 'Fsz', 'Msx', 'Msy', 'Msz', ... 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ... 'Frzz', 'Ftyx', 'Ftyz'}; G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz', ... 'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6', ... 'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6', ... 'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz', ... 'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; %% Create the sub transfer functions minreal_tol = sqrt(eps); % From forces applied in the cartesian frame to displacement of the sample in the cartesian frame sys.G_cart = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}), minreal_tol, false); % From ground motion to Sample displacement sys.G_gm = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Dgx', 'Dgy', 'Dgz'}), minreal_tol, false); % From direct forces applied on the sample to displacement of the sample sys.G_fs = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Fsx', 'Fsy', 'Fsz', 'Msx', 'Msy', 'Msz'}), minreal_tol, false); % From forces applied on NASS's legs to force sensor in each leg sys.G_iff = minreal(G({'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false); % From forces applied on NASS's legs to displacement of each leg sys.G_dleg = minreal(G({'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false); % From forces/torques applied by the NASS to position error sys.G_plant = minreal(G({'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}, {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}), minreal_tol, false); % From forces/torques applied by the NASS to velocity of the actuator sys.G_geoph = minreal(G({'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), minreal_tol, false); % From various disturbance forces to position error sys.G_dist = minreal(G({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'Frzz', 'Ftyx', 'Ftyz'}), minreal_tol, false); %% We remove low frequency and high frequency dynamics that are usually unstable % using =freqsep= is risky as it may change the shape of the transfer functions % f_min = 0.1; % [Hz] % f_max = 1e4; % [Hz] % [~, sys.G_cart] = freqsep(freqsep(sys.G_cart, 2*pi*f_max), 2*pi*f_min); % [~, sys.G_gm] = freqsep(freqsep(sys.G_gm, 2*pi*f_max), 2*pi*f_min); % [~, sys.G_fs] = freqsep(freqsep(sys.G_fs, 2*pi*f_max), 2*pi*f_min); % [~, sys.G_iff] = freqsep(freqsep(sys.G_iff, 2*pi*f_max), 2*pi*f_min); % [~, sys.G_dleg] = freqsep(freqsep(sys.G_dleg, 2*pi*f_max), 2*pi*f_min); % [~, sys.G_plant] = freqsep(freqsep(sys.G_plant, 2*pi*f_max), 2*pi*f_min); %% We finally verify that the system is stable if ~isstable(sys.G_cart) || ~isstable(sys.G_gm) || ~isstable(sys.G_fs) || ~isstable(sys.G_iff) || ~isstable(sys.G_dleg) || ~isstable(sys.G_plant) warning('One of the identified system is unstable'); end end
1.6 Inverse Kinematics of the Hexapod
This Matlab function is accessible here.
function [L] = inverseKinematicsHexapod(hexapod, AP, ARB) % inverseKinematicsHexapod - Compute the initial position of each leg to have the wanted Hexapod's position % % Syntax: inverseKinematicsHexapod(hexapod, AP, ARB) % % Inputs: % - hexapod - Hexapod object containing the geometry of the hexapod % - AP - Position vector of point OB expressed in frame {A} in [m] % - ARB - Rotation Matrix expressed in frame {A} % Wanted Length of the hexapod's legs [m] L = zeros(6, 1); for i = 1:length(L) Bbi = hexapod.pos_top_tranform(i, :)' - 1e-3*[0 ; 0 ; hexapod.TP.thickness+hexapod.Leg.sphere.top+hexapod.SP.thickness.top+hexapod.jacobian]; % [m] Aai = hexapod.pos_base(i, :)' + 1e-3*[0 ; 0 ; hexapod.BP.thickness+hexapod.Leg.sphere.bottom+hexapod.SP.thickness.bottom-hexapod.h-hexapod.jacobian]; % [m] L(i) = sqrt(AP'*AP + Bbi'*Bbi + Aai'*Aai - 2*AP'*Aai + 2*AP'*(ARB*Bbi) - 2*(ARB*Bbi)'*Aai); end end
1.7 computeReferencePose
This Matlab function is accessible here.
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn) % computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample % % Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn) % % Inputs: % - Dy - Reference of the Translation Stage [m] % - Ry - Reference of the Tilt Stage [rad] % - Rz - Reference of the Spindle [rad] % - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad] % - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad] % % Outputs: % - WTr - %% Translation Stage Rty = [1 0 0 0; 0 1 0 Dy; 0 0 1 0; 0 0 0 1]; %% Tilt Stage - Pure rotating aligned with Ob Rry = [ cos(Ry) 0 sin(Ry) 0; 0 1 0 0; -sin(Ry) 0 cos(Ry) 0; 0 0 0 1]; %% Spindle - Rotation along the Z axis Rrz = [cos(Rz) -sin(Rz) 0 0 ; sin(Rz) cos(Rz) 0 0 ; 0 0 1 0 ; 0 0 0 1 ]; %% Micro-Hexapod Rhx = [1 0 0; 0 cos(Dh(4)) -sin(Dh(4)); 0 sin(Dh(4)) cos(Dh(4))]; Rhy = [ cos(Dh(5)) 0 sin(Dh(5)); 0 1 0; -sin(Dh(5)) 0 cos(Dh(5))]; Rhz = [cos(Dh(6)) -sin(Dh(6)) 0; sin(Dh(6)) cos(Dh(6)) 0; 0 0 1]; Rh = [1 0 0 Dh(1) ; 0 1 0 Dh(2) ; 0 0 1 Dh(3) ; 0 0 0 1 ]; Rh(1:3, 1:3) = Rhz*Rhy*Rhx; %% Nano-Hexapod Rnx = [1 0 0; 0 cos(Dn(4)) -sin(Dn(4)); 0 sin(Dn(4)) cos(Dn(4))]; Rny = [ cos(Dn(5)) 0 sin(Dn(5)); 0 1 0; -sin(Dn(5)) 0 cos(Dn(5))]; Rnz = [cos(Dn(6)) -sin(Dn(6)) 0; sin(Dn(6)) cos(Dn(6)) 0; 0 0 1]; Rn = [1 0 0 Dn(1) ; 0 1 0 Dn(2) ; 0 0 1 Dn(3) ; 0 0 0 1 ]; Rn(1:3, 1:3) = Rnx*Rny*Rnz; %% Total Homogeneous transformation WTr = Rty*Rry*Rrz*Rh*Rn; end