<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2021-02-20 sam. 23:08 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Noise Budgeting</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> <script> MathJax = { svg: { scale: 1, fontCache: "global" }, tex: { tags: "ams", multlineWidth: "%MULTLINEWIDTH", tagSide: "right", macros: {bm: ["\\boldsymbol{#1}",1],}, tagIndent: ".8em" } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="../../index.html"> HOME </a> </div><div id="content"> <h1 class="title">Noise Budgeting</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org6528281">1. Maximum Noise of the Relative Motion Sensors</a> <ul> <li><a href="#org5b3bcaa">1.1. Initialization</a></li> <li><a href="#org9daa837">1.2. Control System</a></li> <li><a href="#org538f5fe">1.3. Maximum induced vibration’s ASD</a></li> <li><a href="#org626a300">1.4. Computation of the maximum relative motion sensor noise</a></li> <li><a href="#org3e7c118">1.5. Verification of the induced motion error</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-org6528281" class="outline-2"> <h2 id="org6528281"><span class="section-number-2">1</span> Maximum Noise of the Relative Motion Sensors</h2> <div class="outline-text-2" id="text-1"> </div> <div id="outline-container-org5b3bcaa" class="outline-3"> <h3 id="org5b3bcaa"><span class="section-number-3">1.1</span> Initialization</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab"> open(<span class="org-string">'nass_model.slx'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>); initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'none'</span>); initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-dvf'</span>); </pre> </div> <p> We set the stiffness of the payload fixation: </p> <div class="org-src-container"> <pre class="src src-matlab"> Kp = 1e8; <span class="org-comment">% [N/m]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> initializeNanoHexapod(<span class="org-string">'k'</span>, 1e5, <span class="org-string">'c'</span>, 2e2); Ms = 50; initializeSample(<span class="org-string">'mass'</span>, Ms, <span class="org-string">'freq'</span>, sqrt(Kp<span class="org-type">/</span>Ms)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">*</span>ones(6,1)); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> initializeReferences(<span class="org-string">'Rz_type'</span>, <span class="org-string">'rotating-not-filtered'</span>, <span class="org-string">'Rz_period'</span>, Ms); </pre> </div> </div> </div> <div id="outline-container-org9daa837" class="outline-3"> <h3 id="org9daa837"><span class="section-number-3">1.2</span> Control System</h3> <div class="outline-text-3" id="text-1-2"> <div class="org-src-container"> <pre class="src src-matlab"> Kdvf = 5e3<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>1e3)<span class="org-type">*</span>eye(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> h = 2.0; Kl = 2e7 <span class="org-type">*</span> eye(6) <span class="org-type">*</span> ... 1<span class="org-type">/</span>h<span class="org-type">*</span>(s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100<span class="org-type">/</span>h) <span class="org-type">+</span> 1)<span class="org-type">/</span>(s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100<span class="org-type">*</span>h) <span class="org-type">+</span> 1) <span class="org-type">*</span> ... 1<span class="org-type">/</span>h<span class="org-type">*</span>(s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200<span class="org-type">/</span>h) <span class="org-type">+</span> 1)<span class="org-type">/</span>(s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>200<span class="org-type">*</span>h) <span class="org-type">+</span> 1) <span class="org-type">*</span> ... (s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10 <span class="org-type">+</span> 1)<span class="org-type">/</span>(s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10) <span class="org-type">*</span> ... 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>300); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> load(<span class="org-string">'mat/stages.mat'</span>, <span class="org-string">'nano_hexapod'</span>); K = Kl<span class="org-type">*</span>nano_hexapod.kinematics.J<span class="org-type">*</span>diag([1, 1, 1, 1, 1, 0]); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io); G.InputName = {<span class="org-string">'ndL1'</span>, <span class="org-string">'ndL2'</span>, <span class="org-string">'ndL3'</span>, <span class="org-string">'ndL4'</span>, <span class="org-string">'ndL5'</span>, <span class="org-string">'ndL6'</span>}; G.OutputName = {<span class="org-string">'Ex'</span>, <span class="org-string">'Ey'</span>, <span class="org-string">'Ez'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> </div> </div> <div id="outline-container-org538f5fe" class="outline-3"> <h3 id="org538f5fe"><span class="section-number-3">1.3</span> Maximum induced vibration’s ASD</h3> <div class="outline-text-3" id="text-1-3"> <p> Required maximum induced ASD of the sample’s vibration due to the relative motion sensor noise. \[ \bm{\Gamma}_x(\omega) = \begin{bmatrix} \Gamma_x(\omega) & \Gamma_y(\omega) & \Gamma_{R_x}(\omega) & \Gamma_{R_y}(\omega) \end{bmatrix} \] </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma_x = [(1e<span class="org-type">-</span>9)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100); <span class="org-comment">% Dx</span> (1e<span class="org-type">-</span>9)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100); <span class="org-comment">% Dy</span> (1e<span class="org-type">-</span>9)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100); <span class="org-comment">% Dz</span> (2e<span class="org-type">-</span>8)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100); <span class="org-comment">% Rx</span> (2e<span class="org-type">-</span>8)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100)]; <span class="org-comment">% Ry</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> freqs = logspace(0, 3, 1000); </pre> </div> <p> Corresponding RMS value in [nm rms, nrad rms] </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Specifications</th> </tr> </thead> <tbody> <tr> <td class="org-left">Dx [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dy [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dz [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Rx [nrad]</td> <td class="org-right">241.8</td> </tr> <tr> <td class="org-left">Ry [nrad]</td> <td class="org-right">241.8</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org626a300" class="outline-3"> <h3 id="org626a300"><span class="section-number-3">1.4</span> Computation of the maximum relative motion sensor noise</h3> <div class="outline-text-3" id="text-1-4"> <p> Let’s note \(G\) the transfer function from the 6 sensor noise \(n\) to the 5dof pose error \(x\). We have: \[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \] In terms of ASD: \[ \Gamma_{x_i}(\omega) = \sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2 \cdot {\Gamma_{n_j}}^2(\omega)}, \quad i = 1 \dots 5 \] </p> <p> Let’s suppose that the ASD of all the sensor noise are equal: \[ \Gamma_{n_j} = \Gamma_{n}, \quad j = 1 \dots 6 \] </p> <p> We then have an upper bound of the sensor noise for each of the considered motion errors: \[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{x_i}(\omega)}{\sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}}, \quad i = 1 \dots 5 \] </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma_ndL = zeros(5, length(freqs)); <span class="org-keyword">for</span> <span class="org-variable-name">in</span> = <span class="org-constant">1:5</span> Gamma_ndL(in, <span class="org-type">:</span>) = abs(squeeze(freqresp(Gamma_x(in), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">./</span>sqrt(sum(abs(squeeze(freqresp(G(in, <span class="org-type">:</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2))<span class="org-type">'</span>; <span class="org-keyword">end</span> </pre> </div> <div id="org9e66f1d" class="figure"> <p><img src="figs/noise_budget_ndL_max_asd.png" alt="noise_budget_ndL_max_asd.png" /> </p> <p><span class="figure-number">Figure 1: </span>Maximum estimated ASD of the relative motion sensor noise</p> </div> <p> If the noise ASD of the relative motion sensor is bellow the maximum specified ASD for all the considered motion: \[ \Gamma_n < \Gamma_{n_i, \text{max}}, \quad i = 1 \dots 5 \] Then, the motion error due to sensor noise should be bellow the one specified. </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma_ndL_max = min(Gamma_ndL(1<span class="org-type">:</span>5, <span class="org-type">:</span>)); </pre> </div> <p> Let’s take a sensor with a white noise up to 1kHz that is bellow the specified one: </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma_ndL_ex = abs(squeeze(freqresp(min(Gamma_ndL_max)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>1e3), freqs, <span class="org-string">'Hz'</span>))); </pre> </div> <div id="org21fc07c" class="figure"> <p><img src="figs/relative_motion_sensor_noise_ASD_example.png" alt="relative_motion_sensor_noise_ASD_example.png" /> </p> <p><span class="figure-number">Figure 2: </span>Requirement maximum ASD of the sensor noise + example of a sensor validating the requirements</p> </div> <p> The corresponding RMS value of the sensor noise taken as an example is [nm RMS]: </p> <div class="org-src-container"> <pre class="src src-matlab"> 1e9<span class="org-type">*</span>sqrt(trapz(freqs, Gamma_ndL_max<span class="org-type">.^</span>2)) </pre> </div> <pre class="example"> 519.29 </pre> </div> </div> <div id="outline-container-org3e7c118" class="outline-3"> <h3 id="org3e7c118"><span class="section-number-3">1.5</span> Verification of the induced motion error</h3> <div class="outline-text-3" id="text-1-5"> <p> Verify that by taking the sensor noise, we have to wanted displacement error From the sensor noise PSD \(\Gamma_n(\omega)\), we can estimate the obtained displacement PSD \(\Gamma_x(\omega)\): \[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \cdot \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \] </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma_xest = zeros(5, length(freqs)); <span class="org-keyword">for</span> <span class="org-variable-name">in</span> = <span class="org-constant">1:5</span> Gamma_xest(in, <span class="org-type">:</span>) = sqrt(sum(abs(squeeze(freqresp(G(in, <span class="org-type">:</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>Gamma_ndL_max<span class="org-type">.^</span>2)); <span class="org-keyword">end</span> </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Results</th> <th scope="col" class="org-right">Specifications</th> </tr> </thead> <tbody> <tr> <td class="org-left">Dx [nm]</td> <td class="org-right">8.9</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dy [nm]</td> <td class="org-right">9.3</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dz [nm]</td> <td class="org-right">10.2</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Rx [nrad]</td> <td class="org-right">110.2</td> <td class="org-right">241.8</td> </tr> <tr> <td class="org-left">Ry [nrad]</td> <td class="org-right">107.8</td> <td class="org-right">241.8</td> </tr> </tbody> </table> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2021-02-20 sam. 23:08</p> </div> </body> </html>