#+TITLE: Decentralize control to add virtual mass #+SETUPFILE: ./setup/org-setup-file.org * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src #+begin_src matlab load('mat/conf_simulink.mat'); open('nass_model.slx') #+end_src * Initialization #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'hac-dvf'); #+end_src We set the stiffness of the payload fixation: #+begin_src matlab Kp = 1e8; % [N/m] #+end_src * Identification ** Identification of the transfer function from $\tau$ to $d\mathcal{L}$ #+begin_src matlab K = tf(zeros(6)); Kdvf = tf(zeros(6)); #+end_src We identify the system for the following payload masses: #+begin_src matlab Ms = [1, 10, 50]; #+end_src #+begin_src matlab :exports none Gm = {zeros(length(Ms), 1)}; #+end_src The nano-hexapod has the following leg's stiffness and damping. #+begin_src matlab initializeNanoHexapod('k', 1e5, 'c', 2e2); #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Force Sensors #+end_src #+begin_src matlab :exports none for i = 1:length(Ms) initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1)); initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i)); %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G_dvf.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}; Gm(i) = {G_dvf}; end #+end_src ** Identification of the Primary plant without virtual add of mass #+begin_src matlab :exports none G_x = {zeros(length(Ms), 1)}; G_l = {zeros(length(Ms), 1)}; #+end_src #+begin_src matlab :exports none for i = 1:length(Ms) initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1)); initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i)); %% Run the linearization G = linearize(mdl, io); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; Gx = -G*inv(nano_hexapod.J'); Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; G_x(i) = {Gx}; Gl = -nano_hexapod.J*G; Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'}; G_l(i) = {Gl}; end #+end_src * Adding Virtual Mass in the Leg's Space ** Plant #+begin_src matlab :exports none freqs = logspace(-1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(Ms) plot(freqs, abs(squeeze(freqresp(Gm{i}(1, 1), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(Ms) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm{i}(1, 1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_plant_L.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_plant_L #+caption: Transfer function from $\tau_i$ to $d\mathcal{L}_i$ for three payload masses #+RESULTS: [[file:figs/virtual_mass_plant_L.png]] ** Controller Design #+begin_src matlab Kdvf = 10*s^2/(1+s/2/pi/500)^2*eye(6); #+end_src #+begin_src matlab :exports none for i = 1:length(Ms) isstable(feedback(Gm{i}*Kdvf, eye(6), -1)) end #+end_src #+begin_src matlab :exports none freqs = logspace(-1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(Ms) plot(freqs, abs(squeeze(freqresp(Gm{i}(1, 1)*Kdvf(1,1), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(Ms) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm{i}(1, 1)*Kdvf(1,1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_loop_gain_L.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_loop_gain_L #+caption: Loop Gain for the addition of virtual mass in the leg's space #+RESULTS: [[file:figs/virtual_mass_loop_gain_L.png]] ** Identification of the Primary Plant #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror load('mat/stages.mat', 'nano_hexapod'); GmL_x = {zeros(length(Ms), 1)}; GmL_l = {zeros(length(Ms), 1)}; for i = 1:length(Ms) initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1)); initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i)); %% Run the linearization G = linearize(mdl, io); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; Gx = -G*inv(nano_hexapod.J'); Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; GmL_x(i) = {Gx}; Gl = -nano_hexapod.J*G; Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'}; GmL_l(i) = {Gl}; end #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 5000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmL_x{i}(1, 1), freqs, 'Hz'))), '--'); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmL_x{i}(2, 2), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/\mathcal{F}_y$') ax2 = subplot(2, 2, 2); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmL_x{i}(3, 3), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('$\mathcal{X}_z/\mathcal{F}_z$') ax3 = subplot(2, 2, 3); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmL_x{i}(1, 1), freqs, 'Hz')))), '--'); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmL_x{i}(2, 2), freqs, 'Hz')))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); ax4 = subplot(2, 2, 4); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmL_x{i}(3, 3), freqs, 'Hz')))), '--', ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'southwest'); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_L_primary_plant_X.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_L_primary_plant_X #+caption: Comparison of the transfer function from $\mathcal{F}_{x,y,z}$ to $\mathcal{X}_{x,y,z}$ with and without the virtual addition of mass in the leg's space #+RESULTS: [[file:figs/virtual_mass_L_primary_plant_X.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 5000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmL_l{i}(1, 1), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmL_l{i}(1, 1), freqs, 'Hz')))), '--', ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_L_primary_plant_L.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_L_primary_plant_L #+caption: Comparison of the transfer function from $\tau_i$ to $\mathcal{L}_{i}$ with and without the virtual addition of mass in the leg's space #+RESULTS: [[file:figs/virtual_mass_L_primary_plant_L.png]] * Adding Virtual Mass in the Task Space ** Plant Let's look at the transfer function from $\bm{\mathcal{F}}$ to $d\bm{\mathcal{X}}$: \[ \frac{d\bm{\mathcal{L}}}{\bm{\mathcal{F}}} = \bm{J}^{-1} \frac{d\bm{\mathcal{L}}}{\bm{\tau}} \bm{J}^{-T} \] #+begin_src matlab :exports none load('mat/stages.mat', 'nano_hexapod'); GmX = {zeros(length(Ms), 1)}; for i = 1:length(Ms) GmX(i) = {inv(nano_hexapod.J) * Gm{i} * inv(nano_hexapod.J')}; end #+end_src #+begin_src matlab :exports none freqs = logspace(-1, 3, 1000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX{i}(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX{i}(2, 2), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 2, 3); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX{i}(1, 1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX{i}(2, 2), freqs, 'Hz')))), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'northeast'); ax1 = subplot(2, 2, 2); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX{i}(3, 3), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 2, 4); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX{i}(3, 3), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_plant_X.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_plant_X #+caption: Dynamics from $\mathcal{F}_{x,y,z}$ to $\mathcal{X}_{x,y,z}$ used for virtual mass addition in the task space #+RESULTS: [[file:figs/virtual_mass_plant_X.png]] ** Controller Design #+begin_src matlab KmX = (s^2*1/(1+s/2/pi/500)^2*diag([1 1 50 0 0 0])); #+end_src #+begin_src matlab :exports none for i = 1:length(Ms) isstable(feedback(GmX{i}*KmX, eye(6), -1)) end #+end_src #+begin_src matlab :exports none freqs = logspace(-1, 3, 1000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:length(Ms) LmX = GmX{i}*KmX; set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(LmX(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(LmX(2, 2), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 2, 3); hold on; for i = 1:length(Ms) LmX = GmX{i}*KmX; set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(LmX(1, 1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(LmX(2, 2), freqs, 'Hz')))), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'northeast'); ax1 = subplot(2, 2, 2); hold on; for i = 1:length(Ms) LmX = GmX{i}*KmX; set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(LmX(3, 3), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 2, 4); hold on; for i = 1:length(Ms) LmX = GmX{i}*KmX; set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(LmX(3, 3), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f$ [kg]', Ms(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_loop_gain_X.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_loop_gain_X #+caption: Loop gain for virtual mass addition in the task space #+RESULTS: [[file:figs/virtual_mass_loop_gain_X.png]] #+begin_src matlab Kdvf = inv(nano_hexapod.J')*KmX*inv(nano_hexapod.J); #+end_src #+begin_src matlab :exports none for i = 1:length(Ms) isstable(feedback(Gm{i}*Kdvf, eye(6), -1)) end #+end_src ** Identification of the Primary Plant #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror load('mat/stages.mat', 'nano_hexapod'); GmX_x = {zeros(length(Ms), 1)}; GmX_l = {zeros(length(Ms), 1)}; for i = 1:length(Ms) initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1)); initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i)); %% Run the linearization G = linearize(mdl, io); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; Gx = -G*inv(nano_hexapod.J'); Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; GmX_x(i) = {Gx}; Gl = -nano_hexapod.J*G; Gl.OutputName = {'E1', 'E2', 'E3', 'E4', 'E5', 'E6'}; GmX_l(i) = {Gl}; end #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 5000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX_x{i}(1, 1), freqs, 'Hz'))), '--'); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX_x{i}(2, 2), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('$\mathcal{X}_x/\mathcal{F}_x$, $\mathcal{X}_y/\mathcal{F}_y$') ax2 = subplot(2, 2, 2); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX_x{i}(3, 3), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('$\mathcal{X}_z/\mathcal{F}_z$') ax3 = subplot(2, 2, 3); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX_x{i}(1, 1), freqs, 'Hz')))), '--'); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX_x{i}(2, 2), freqs, 'Hz')))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); ax4 = subplot(2, 2, 4); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX_x{i}(3, 3), freqs, 'Hz')))), '--', ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'southwest'); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_X_primary_plant_X.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_X_primary_plant_X #+caption: Comparison of the transfer function from $\mathcal{F}_{x,y,z}$ to $\mathcal{X}_{x,y,z}$ with and without the virtual addition of mass in the task space #+RESULTS: [[file:figs/virtual_mass_X_primary_plant_X.png]] #+begin_src matlab :exports none freqs = logspace(0, 3, 5000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(GmX_l{i}(1, 1), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(Ms) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ... 'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(GmX_l{i}(1, 1), freqs, 'Hz')))), '--', ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-270, 90]); yticks([-360:90:360]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/virtual_mass_X_primary_plant_L.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:virtual_mass_X_primary_plant_L #+caption: Comparison of the transfer function from $\tau_i$ to $\mathcal{L}_{i}$ with and without the virtual addition of mass in the task space #+RESULTS: [[file:figs/virtual_mass_X_primary_plant_L.png]]