<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-04-05 dim. 19:43 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Determination of the optimal nano-hexapod’s stiffness</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/> <script type="text/javascript" src="./js/jquery.min.js"></script> <script type="text/javascript" src="./js/bootstrap.min.js"></script> <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script> <script type="text/javascript" src="./js/readtheorg.js"></script> <script type="text/javascript"> // @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> // @license-end </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="index.html"> UP </a> | <a accesskey="H" href="index.html"> HOME </a> </div><div id="content"> <h1 class="title">Determination of the optimal nano-hexapod’s stiffness</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org84aa9ce">1. Spindle Rotation Speed</a> <ul> <li><a href="#org37d23dd">1.1. Initialization</a></li> <li><a href="#org75fea48">1.2. Identification when rotating at maximum speed</a></li> <li><a href="#orgf19758e">1.3. Change of dynamics</a></li> </ul> </li> <li><a href="#org57a0e57">2. Micro-Station Compliance Effect</a> <ul> <li><a href="#orgca3001c">2.1. Identification of the micro-station compliance</a></li> <li><a href="#orgffe89ca">2.2. Identification of the dynamics with a rigid micro-station</a></li> <li><a href="#org21c0a38">2.3. Identification of the dynamics with a flexible micro-station</a></li> <li><a href="#orge9344e2">2.4. Obtained Dynamics</a></li> </ul> </li> <li><a href="#orgd6382d8">3. Payload “Impedance” Effect</a> <ul> <li><a href="#orgc1416f3">3.1. Initialization</a></li> <li><a href="#orgc8cd70d">3.2. Identification of the dynamics while change the payload dynamics</a></li> <li><a href="#org4da36db">3.3. Change of dynamics for the primary controller</a> <ul> <li><a href="#org913b8cb">3.3.1. Frequency variation</a></li> <li><a href="#org906dcba">3.3.2. Mass variation</a></li> <li><a href="#org632af10">3.3.3. Total variation</a></li> </ul> </li> </ul> </li> <li><a href="#orgf0a88c5">4. Total Change of dynamics</a></li> </ul> </div> </div> <p> As shown before, many parameters other than the nano-hexapod itself do influence the plant dynamics: </p> <ul class="org-ul"> <li>The micro-station compliance (studied <a href="uncertainty_support.html">here</a>)</li> <li>The payload mass and dynamical properties (studied <a href="uncertainty_payload.html">here</a> and <a href="uncertainty_experiment.html">here</a>)</li> <li>The experimental conditions, mainly the spindle rotation speed (studied <a href="uncertainty_experiment.html">here</a>)</li> </ul> <p> As seen before, the stiffness of the nano-hexapod greatly influence the effect of such parameters. </p> <p> We wish here to see if we can determine an optimal stiffness of the nano-hexapod such that: </p> <ul class="org-ul"> <li>Section <a href="#org1f375bb">1</a>: the change of its dynamics due to the spindle rotation speed is acceptable</li> <li>Section <a href="#orgcf5798c">2</a>: the support compliance dynamics is not much present in the nano-hexapod dynamics</li> <li>Section <a href="#org1a9d09c">3</a>: the change of payload impedance has acceptable effect on the plant dynamics</li> </ul> <p> The overall goal is to design a nano-hexapod that will allow the highest possible control bandwidth. </p> <div id="outline-container-org84aa9ce" class="outline-2"> <h2 id="org84aa9ce"><span class="section-number-2">1</span> Spindle Rotation Speed</h2> <div class="outline-text-2" id="text-1"> <p> <a id="org1f375bb"></a> </p> <p> In this section, we look at the effect of the spindle rotation speed on the plant dynamics. </p> <p> The rotation speed will have an effect due to the Coriolis effect. </p> </div> <div id="outline-container-org37d23dd" class="outline-3"> <h3 id="org37d23dd"><span class="section-number-3">1.1</span> Initialization</h3> <div class="outline-text-3" id="text-1-1"> <p> We initialize all the stages with the default parameters. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); </pre> </div> <p> We use a sample mass of 10kg. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeSample(<span class="org-string">'mass'</span>, 10); </pre> </div> <p> We don’t include disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics. We however include gravity. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>); initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>); initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'none'</span>); initializeController(); </pre> </div> </div> </div> <div id="outline-container-org75fea48" class="outline-3"> <h3 id="org75fea48"><span class="section-number-3">1.2</span> Identification when rotating at maximum speed</h3> <div class="outline-text-3" id="text-1-2"> <p> We identify the dynamics for the following spindle rotation speeds <code>Rz_rpm</code>: </p> <div class="org-src-container"> <pre class="src src-matlab"> Rz_rpm = linspace(0, 60, 6); </pre> </div> <p> And for the following nano-hexapod actuator stiffness <code>Ks</code>: </p> <div class="org-src-container"> <pre class="src src-matlab"> Ks = logspace(3,9,7); <span class="org-comment">% [N/m]</span> </pre> </div> </div> </div> <div id="outline-container-orgf19758e" class="outline-3"> <h3 id="orgf19758e"><span class="section-number-3">1.3</span> Change of dynamics</h3> <div class="outline-text-3" id="text-1-3"> <p> We plot the change of dynamics due to the change of the spindle rotation speed (from 0rpm to 60rpm): </p> <ul class="org-ul"> <li>Figure <a href="#org2b01fbe">2</a>: from actuator force \(\tau\) to force sensor \(\tau_m\) (IFF plant)</li> <li>Figure <a href="#org9bfe588">3</a>: from actuator force \(\tau\) to actuator relative displacement \(d\mathcal{L}\) (Decentralized positioning plant)</li> <li>Figure <a href="#org9f887c8">4</a>: from force in the task space \(\mathcal{F}_x\) to sample displacement \(\mathcal{X}_x\) (Centralized positioning plant)</li> <li>Figure <a href="#org5926aca">5</a>: from force in the task space \(\mathcal{F}_x\) to sample displacement \(\mathcal{X}_y\) (coupling of the centralized positioning plant)</li> </ul> <div id="org3c83afc" class="figure"> <p><img src="figs/opti_stiffness_iff_root_locus.png" alt="opti_stiffness_iff_root_locus.png" /> </p> <p><span class="figure-number">Figure 1: </span>Root Locus plot for IFF control when not rotating (in red) and when rotating at 60rpm (in blue) for 4 different nano-hexapod stiffnesses (<a href="./figs/opti_stiffness_iff_root_locus.png">png</a>, <a href="./figs/opti_stiffness_iff_root_locus.pdf">pdf</a>)</p> </div> <div id="org2b01fbe" class="figure"> <p><img src="figs/opt_stiffness_wz_iff.png" alt="opt_stiffness_wz_iff.png" /> </p> <p><span class="figure-number">Figure 2: </span>Change of dynamics from actuator \(\tau\) to actuator force sensor \(\tau_m\) for a spindle rotation speed from 0rpm to 60rpm (<a href="./figs/opt_stiffness_wz_iff.png">png</a>, <a href="./figs/opt_stiffness_wz_iff.pdf">pdf</a>)</p> </div> <div id="org9bfe588" class="figure"> <p><img src="figs/opt_stiffness_wz_dvf.png" alt="opt_stiffness_wz_dvf.png" /> </p> <p><span class="figure-number">Figure 3: </span>Change of dynamics from actuator force \(\tau\) to actuator displacement \(d\mathcal{L}\) for a spindle rotation speed from 0rpm to 60rpm (<a href="./figs/opt_stiffness_wz_dvf.png">png</a>, <a href="./figs/opt_stiffness_wz_dvf.pdf">pdf</a>)</p> </div> <div id="org9f887c8" class="figure"> <p><img src="figs/opt_stiffness_wz_fx_dx.png" alt="opt_stiffness_wz_fx_dx.png" /> </p> <p><span class="figure-number">Figure 4: </span>Change of dynamics from force \(\mathcal{F}_x\) to displacement \(\mathcal{X}_x\) for a spindle rotation speed from 0rpm to 60rpm (<a href="./figs/opt_stiffness_wz_fx_dx.png">png</a>, <a href="./figs/opt_stiffness_wz_fx_dx.pdf">pdf</a>)</p> </div> <div id="org5926aca" class="figure"> <p><img src="figs/opt_stiffness_wz_coupling.png" alt="opt_stiffness_wz_coupling.png" /> </p> <p><span class="figure-number">Figure 5: </span>Change of Coupling from force \(\mathcal{F}_x\) to displacement \(\mathcal{X}_y\) for a spindle rotation speed from 0rpm to 60rpm (<a href="./figs/opt_stiffness_wz_coupling.png">png</a>, <a href="./figs/opt_stiffness_wz_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div class="outline-text-2" id="text-1"> <div class="important"> <p> The leg stiffness should be at higher than \(k_i = 10^4\ [N/m]\) such that the main resonance frequency does not shift too much when rotating. For the coupling, it is more difficult to conclude about the minimum required leg stiffness. </p> </div> <div class="notes"> <p> Note that we can use very soft nano-hexapod if we limit the spindle rotating speed. </p> </div> </div> </div> <div id="outline-container-org57a0e57" class="outline-2"> <h2 id="org57a0e57"><span class="section-number-2">2</span> Micro-Station Compliance Effect</h2> <div class="outline-text-2" id="text-2"> <p> <a id="orgcf5798c"></a> </p> <ul class="org-ul"> <li>take the 6dof compliance of the micro-station</li> <li>simple model + uncertainty</li> </ul> </div> <div id="outline-container-orgca3001c" class="outline-3"> <h3 id="orgca3001c"><span class="section-number-3">2.1</span> Identification of the micro-station compliance</h3> <div class="outline-text-3" id="text-2-1"> <p> We initialize all the stages with the default parameters. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(<span class="org-string">'type'</span>, <span class="org-string">'compliance'</span>); </pre> </div> <p> We put nothing on top of the micro-hexapod. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeAxisc(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); initializeMirror(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); initializeNanoHexapod(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); initializeSample(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <p> And we identify the dynamics from forces/torques applied on the micro-hexapod top platform to the motion of the micro-hexapod top platform at the same point. The diagonal element of the identified Micro-Station compliance matrix are shown in Figure <a href="#org15a14d9">6</a>. </p> <div id="org15a14d9" class="figure"> <p><img src="figs/opt_stiff_micro_station_compliance.png" alt="opt_stiff_micro_station_compliance.png" /> </p> <p><span class="figure-number">Figure 6: </span>Identified Compliance of the Micro-Station (<a href="./figs/opt_stiff_micro_station_compliance.png">png</a>, <a href="./figs/opt_stiff_micro_station_compliance.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgffe89ca" class="outline-3"> <h3 id="orgffe89ca"><span class="section-number-3">2.2</span> Identification of the dynamics with a rigid micro-station</h3> <div class="outline-text-3" id="text-2-2"> <p> We now identify the dynamics when the micro-station is rigid. This is equivalent of identifying the dynamics of the nano-hexapod when fixed to a rigid ground. We also choose the sample to be rigid and to have a mass of 10kg. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeSample(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'mass'</span>, 10); </pre> </div> <p> As before, we identify the dynamics for the following actuator stiffnesses: </p> <div class="org-src-container"> <pre class="src src-matlab"> Ks = logspace(3,9,7); <span class="org-comment">% [N/m]</span> </pre> </div> </div> </div> <div id="outline-container-org21c0a38" class="outline-3"> <h3 id="org21c0a38"><span class="section-number-3">2.3</span> Identification of the dynamics with a flexible micro-station</h3> <div class="outline-text-3" id="text-2-3"> <p> We now initialize all the micro-station stages to be flexible. And we identify the dynamics of the nano-hexapod. </p> </div> </div> <div id="outline-container-orge9344e2" class="outline-3"> <h3 id="orge9344e2"><span class="section-number-3">2.4</span> Obtained Dynamics</h3> <div class="outline-text-3" id="text-2-4"> <p> We plot the change of dynamics due to the compliance of the Micro-Station. The solid curves are corresponding to the nano-hexapod without the micro-station, and the dashed curves with the micro-station: </p> <ul class="org-ul"> <li>Figure <a href="#org6257db9">7</a>: from actuator force \(\tau\) to force sensor \(\tau_m\) (IFF plant)</li> <li>Figure <a href="#orgcea6354">8</a>: from actuator force \(\tau\) to actuator relative displacement \(d\mathcal{L}\) (Decentralized positioning plant)</li> <li>Figure <a href="#org5c6f89c">9</a>: from force in the task space \(\mathcal{F}_x\) to sample displacement \(\mathcal{X}_x\) (Centralized positioning plant)</li> <li>Figure <a href="#org7f2360c">10</a>: from force in the task space \(\mathcal{F}_z\) to sample displacement \(\mathcal{X}_z\) (Centralized positioning plant)</li> </ul> <div id="org6257db9" class="figure"> <p><img src="figs/opt_stiffness_micro_station_iff.png" alt="opt_stiffness_micro_station_iff.png" /> </p> <p><span class="figure-number">Figure 7: </span>Change of dynamics from actuator \(\tau\) to actuator force sensor \(\tau_m\) due to the micro-station compliance (<a href="./figs/opt_stiffness_micro_station_iff.png">png</a>, <a href="./figs/opt_stiffness_micro_station_iff.pdf">pdf</a>)</p> </div> <div id="orgcea6354" class="figure"> <p><img src="figs/opt_stiffness_micro_station_dvf.png" alt="opt_stiffness_micro_station_dvf.png" /> </p> <p><span class="figure-number">Figure 8: </span>Change of dynamics from actuator force \(\tau\) to actuator displacement \(d\mathcal{L}\) due to the micro-station compliance (<a href="./figs/opt_stiffness_micro_station_dvf.png">png</a>, <a href="./figs/opt_stiffness_micro_station_dvf.pdf">pdf</a>)</p> </div> <div id="org5c6f89c" class="figure"> <p><img src="figs/opt_stiffness_micro_station_fx_dx.png" alt="opt_stiffness_micro_station_fx_dx.png" /> </p> <p><span class="figure-number">Figure 9: </span>Change of dynamics from force \(\mathcal{F}_x\) to displacement \(\mathcal{X}_x\) due to the micro-station compliance (<a href="./figs/opt_stiffness_micro_station_fx_dx.png">png</a>, <a href="./figs/opt_stiffness_micro_station_fx_dx.pdf">pdf</a>)</p> </div> <div id="org7f2360c" class="figure"> <p><img src="figs/opt_stiffness_micro_station_fz_dz.png" alt="opt_stiffness_micro_station_fz_dz.png" /> </p> <p><span class="figure-number">Figure 10: </span>Change of dynamics from force \(\mathcal{F}_z\) to displacement \(\mathcal{X}_z\) due to the micro-station compliance (<a href="./figs/opt_stiffness_micro_station_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_micro_station_fz_dz.pdf">pdf</a>)</p> </div> </div> </div> <div class="outline-text-2" id="text-2"> <div class="important"> <p> The dynamics of the nano-hexapod is not affected by the micro-station dynamics (compliance) when the stiffness of the legs is less than \(10^6\ [N/m]\). When the nano-hexapod is stiff (\(k>10^7\ [N/m]\)), the compliance of the micro-station appears in the primary plant. </p> </div> </div> </div> <div id="outline-container-orgd6382d8" class="outline-2"> <h2 id="orgd6382d8"><span class="section-number-2">3</span> Payload “Impedance” Effect</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org1a9d09c"></a> </p> </div> <div id="outline-container-orgc1416f3" class="outline-3"> <h3 id="orgc1416f3"><span class="section-number-3">3.1</span> Initialization</h3> <div class="outline-text-3" id="text-3-1"> <p> We initialize all the stages with the default parameters. We don’t include disturbances in this model as it adds complexity to the simulations and does not alter the obtained dynamics. :exports none </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>); </pre> </div> <p> We set the controller type to Open-Loop, and we do not need to log any signal. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>); initializeController(); initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'none'</span>); initializeReferences(); </pre> </div> </div> </div> <div id="outline-container-orgc8cd70d" class="outline-3"> <h3 id="orgc8cd70d"><span class="section-number-3">3.2</span> Identification of the dynamics while change the payload dynamics</h3> <div class="outline-text-3" id="text-3-2"> <p> We make the following change of payload dynamics: </p> <ul class="org-ul"> <li>Change of mass: from 1kg to 50kg</li> <li>Change of resonance frequency: from 50Hz to 500Hz</li> <li>The damping ratio of the payload is fixed to \(\xi = 0.2\)</li> </ul> <p> We identify the dynamics for the following payload masses <code>Ms</code> and nano-hexapod leg’s stiffnesses <code>Ks</code>: </p> <div class="org-src-container"> <pre class="src src-matlab"> Ms = [1, 20, 50]; <span class="org-comment">% [Kg]</span> Ks = logspace(3,9,7); <span class="org-comment">% [N/m]</span> </pre> </div> <p> We then identify the dynamics for the following payload resonance frequencies <code>Fs</code>: </p> <div class="org-src-container"> <pre class="src src-matlab"> Fs = [50, 200, 500]; <span class="org-comment">% [Hz]</span> </pre> </div> </div> </div> <div id="outline-container-org4da36db" class="outline-3"> <h3 id="org4da36db"><span class="section-number-3">3.3</span> Change of dynamics for the primary controller</h3> <div class="outline-text-3" id="text-3-3"> </div> <div id="outline-container-org913b8cb" class="outline-4"> <h4 id="org913b8cb"><span class="section-number-4">3.3.1</span> Frequency variation</h4> <div class="outline-text-4" id="text-3-3-1"> <p> We here compare the dynamics for the same payload mass, but different stiffness resulting in different resonance frequency of the payload: </p> <ul class="org-ul"> <li>Figure <a href="#orgcce8740">11</a>: dynamics from a force \(\mathcal{F}_z\) applied in the task space in the vertical direction to the vertical displacement of the sample \(\mathcal{X}_z\) for both a very soft and a very stiff nano-hexapod.</li> <li>Figure <a href="#org87ecfc8">12</a>: same, but for all tested nano-hexapod stiffnesses</li> </ul> <p> We can see two mass lines for the soft nano-hexapod (Figure <a href="#orgcce8740">11</a>): </p> <ul class="org-ul"> <li>The first mass line corresponds to \(\frac{1}{(m_n + m_p)s^2}\) where \(m_p = 10\ [kg]\) is the mass of the payload and \(m_n = 15\ [Kg]\) is the mass of the nano-hexapod top platform and attached mirror</li> <li>The second mass line corresponds to \(\frac{1}{m_n s^2}\)</li> <li>The zero corresponds to the resonance of the payload alone (fixed nano-hexapod’s top platform)</li> </ul> <div id="orgcce8740" class="figure"> <p><img src="figs/opt_stiffness_payload_freq_fz_dz.png" alt="opt_stiffness_payload_freq_fz_dz.png" /> </p> <p><span class="figure-number">Figure 11: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload resonance frequency, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_freq_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_freq_fz_dz.pdf">pdf</a>)</p> </div> <div id="org87ecfc8" class="figure"> <p><img src="figs/opt_stiffness_payload_freq_all.png" alt="opt_stiffness_payload_freq_all.png" /> </p> <p><span class="figure-number">Figure 12: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload resonance frequency (<a href="./figs/opt_stiffness_payload_freq_all.png">png</a>, <a href="./figs/opt_stiffness_payload_freq_all.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org906dcba" class="outline-4"> <h4 id="org906dcba"><span class="section-number-4">3.3.2</span> Mass variation</h4> <div class="outline-text-4" id="text-3-3-2"> <p> We here compare the dynamics for different payload mass with the same resonance frequency (100Hz): </p> <ul class="org-ul"> <li>Figure <a href="#org4eb6bfc">13</a>: dynamics from a force \(\mathcal{F}_z\) applied in the task space in the vertical direction to the vertical displacement of the sample \(\mathcal{X}_z\) for both a very soft and a very stiff nano-hexapod.</li> <li>Figure <a href="#org6e013a7">14</a>: same, but for all tested nano-hexapod stiffnesses</li> </ul> <p> We can see here that for the soft nano-hexapod: </p> <ul class="org-ul"> <li>the first resonance \(\omega_n\) is changing with the mass of the payload as \(\omega_n = \sqrt{\frac{k_n}{m_p + m_n}}\) with \(k_p\) the stiffness of the nano-hexapod, \(m_p\) the payload’s mass and \(m_n\) the mass of the nano-hexapod top platform</li> <li>the first mass line corresponding to \(\frac{1}{(m_p + m_n)s^2}\) is changing with the payload mass</li> <li>the zero at 100Hz is not changing as it corresponds to the resonance of the payload itself</li> <li>the second mass line does not change</li> </ul> <div id="org4eb6bfc" class="figure"> <p><img src="figs/opt_stiffness_payload_mass_fz_dz.png" alt="opt_stiffness_payload_mass_fz_dz.png" /> </p> <p><span class="figure-number">Figure 13: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload mass, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_mass_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_mass_fz_dz.pdf">pdf</a>)</p> </div> <div id="org6e013a7" class="figure"> <p><img src="figs/opt_stiffness_payload_mass_all.png" alt="opt_stiffness_payload_mass_all.png" /> </p> <p><span class="figure-number">Figure 14: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload mass (<a href="./figs/opt_stiffness_payload_mass_all.png">png</a>, <a href="./figs/opt_stiffness_payload_mass_all.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org632af10" class="outline-4"> <h4 id="org632af10"><span class="section-number-4">3.3.3</span> Total variation</h4> <div class="outline-text-4" id="text-3-3-3"> <p> We now plot the total change of dynamics due to change of the payload (Figures <a href="#orgf33beff">15</a> and <a href="#org75c1705">16</a>): </p> <ul class="org-ul"> <li>mass from 1kg to 50kg</li> <li>main resonance from 50Hz to 500Hz</li> </ul> <div id="orgf33beff" class="figure"> <p><img src="figs/opt_stiffness_payload_impedance_all_fz_dz.png" alt="opt_stiffness_payload_impedance_all_fz_dz.png" /> </p> <p><span class="figure-number">Figure 15: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload dynamics, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_impedance_all_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_impedance_all_fz_dz.pdf">pdf</a>)</p> </div> <div id="org75c1705" class="figure"> <p><img src="figs/opt_stiffness_payload_impedance_fz_dz.png" alt="opt_stiffness_payload_impedance_fz_dz.png" /> </p> <p><span class="figure-number">Figure 16: </span>Dynamics from \(\mathcal{F}_z\) to \(\mathcal{X}_z\) for varying payload dynamics, both for a soft nano-hexapod and a stiff nano-hexapod (<a href="./figs/opt_stiffness_payload_impedance_fz_dz.png">png</a>, <a href="./figs/opt_stiffness_payload_impedance_fz_dz.pdf">pdf</a>)</p> </div> </div> </div> </div> <div class="outline-text-2" id="text-3"> <div class="important"> <p> </p> </div> </div> </div> <div id="outline-container-orgf0a88c5" class="outline-2"> <h2 id="orgf0a88c5"><span class="section-number-2">4</span> Total Change of dynamics</h2> <div class="outline-text-2" id="text-4"> <p> We now consider the total change of nano-hexapod dynamics due to: </p> <ul class="org-ul"> <li><code>Gk_wz_err</code> - Change of spindle rotation speed</li> <li><code>Gf_err</code> and <code>Gm_err</code> - Change of payload resonance</li> <li><code>Gmf_err</code> and <code>Gmr_err</code> - Micro-Station compliance</li> </ul> <p> The obtained dynamics are shown: </p> <ul class="org-ul"> <li>Figure <a href="#org045955d">17</a> for a stiffness \(k = 10^3\ [N/m]\)</li> <li>Figure <a href="#orgc2c0741">18</a> for a stiffness \(k = 10^5\ [N/m]\)</li> <li>Figure <a href="#org7a8f7c3">19</a> for a stiffness \(k = 10^7\ [N/m]\)</li> <li>Figure <a href="#org4745a60">20</a> for a stiffness \(k = 10^9\ [N/m]\)</li> </ul> <p> And finally, in Figures <a href="#org0a4e875">21</a> and <a href="#orge890242">22</a> are shown an animation of the change of dynamics with the nano-hexapod’s stiffness. </p> <div id="org045955d" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_fx_dx_k_1e3.png" alt="opt_stiffness_plant_dynamics_fx_dx_k_1e3.png" /> </p> <p><span class="figure-number">Figure 17: </span>Total variation of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\). Nano-hexapod leg’s stiffness is equal to \(k = 10^3\ [N/m]\) (<a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e3.png">png</a>, <a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e3.pdf">pdf</a>)</p> </div> <div id="orgc2c0741" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_fx_dx_k_1e5.png" alt="opt_stiffness_plant_dynamics_fx_dx_k_1e5.png" /> </p> <p><span class="figure-number">Figure 18: </span>Total variation of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\). Nano-hexapod leg’s stiffness is equal to \(k = 10^5\ [N/m]\) (<a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e5.png">png</a>, <a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e5.pdf">pdf</a>)</p> </div> <div id="org7a8f7c3" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_fx_dx_k_1e7.png" alt="opt_stiffness_plant_dynamics_fx_dx_k_1e7.png" /> </p> <p><span class="figure-number">Figure 19: </span>Total variation of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\). Nano-hexapod leg’s stiffness is equal to \(k = 10^7\ [N/m]\) (<a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e7.png">png</a>, <a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e7.pdf">pdf</a>)</p> </div> <div id="org4745a60" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_fx_dx_k_1e9.png" alt="opt_stiffness_plant_dynamics_fx_dx_k_1e9.png" /> </p> <p><span class="figure-number">Figure 20: </span>Total variation of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\). Nano-hexapod leg’s stiffness is equal to \(k = 10^9\ [N/m]\) (<a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e9.png">png</a>, <a href="./figs/opt_stiffness_plant_dynamics_fx_dx_k_1e9.pdf">pdf</a>)</p> </div> <div id="org0a4e875" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_task_space.gif" alt="opt_stiffness_plant_dynamics_task_space.gif" /> </p> <p><span class="figure-number">Figure 21: </span>Variability of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\) with varying nano-hexapod stiffness</p> </div> <div id="orge890242" class="figure"> <p><img src="figs/opt_stiffness_plant_dynamics_task_space_colors.gif" alt="opt_stiffness_plant_dynamics_task_space_colors.gif" /> </p> <p><span class="figure-number">Figure 22: </span>Variability of the dynamics from \(\mathcal{F}_x\) to \(\mathcal{X}_x\) with varying nano-hexapod stiffness</p> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-04-05 dim. 19:43</p> </div> </body> </html>