#+TITLE:Centrifugal Forces #+SETUPFILE: ./setup/org-setup-file.org * Introduction :ignore: In this document, we wish to estimate the centrifugal forces due to the spindle's rotation when the sample's center of mass is off-centered with respect to the rotation axis. This is the case then the sample is moved by the micro-hexapod. The centrifugal forces are defined as represented Figure [[fig:centrifugal]] where: - $M$ is the total mass of the rotating elements in $[kg]$ - $\omega$ is the rotation speed in $[rad/s]$ - $r$ is the distance to the rotation axis in $[m]$ #+name: fig:centrifugal #+caption: Centrifugal forces [[file:./figs/centrifugal.png]] * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src * Parameters We define some parameters for the computation. The mass of the sample can vary from $1\,kg$ to $50\,kg$ to which is added to mass of the metrology reflector and the nano-hexapod's top platform (here set to $15\,kg$). #+begin_src matlab M_light = 16; % mass of excentred parts mooving [kg] M_heavy = 65; % [kg] #+end_src For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm. #+begin_src matlab w_light = 2*pi; % rotational speed [rad/s] w_heavy = 2*pi/60; % rotational speed [rad/s] #+end_src Finally, we consider a mass eccentricity of $10\,mm$. #+begin_src matlab R = 0.1; % Excentricity [m] #+end_src * Centrifugal forces for light and heavy sample From the formula $F_c = m \omega^2 r$, we obtain the values shown below. #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data = [M_light*R*w_light^2; M_heavy*R*w_heavy^2]; data2orgtable(data, {'light', 'heavy'}, {'Force [N]'}, ' %.1f '); #+end_src #+RESULTS: | | Force [N] | |-------+-----------| | light | 63.2 | | heavy | 0.1 | * Centrifugal forces as a function of the rotation speed The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure [[fig:centrifugal_forces_rpm]]. #+begin_src matlab :exports none ws = 0:1:60; % [rpm] figure; hold on; plot(ws, M_light*(2*pi*ws/60).^2*R, 'DisplayName', sprintf('$M = %.0f$ [kg]', M_light)) plot(ws, M_heavy*(2*pi*ws/60).^2*R, 'DisplayName', sprintf('$M = %.0f$ [kg]', M_heavy)) hold off; xlabel('Rotation Speed [rpm]'); ylabel('Centrifugal Force [N]'); legend('Location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/centrifugal_forces_rpm.pdf', 'width', 'wide', 'height', 'tall') #+end_src #+name: fig:centrifugal_forces_rpm #+CAPTION: Centrifugal forces function of the rotation speed #+RESULTS: [[file:figs/centrifugal_forces_rpm.png]] * Maximum rotation speed as a function of the mass We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure [[fig:max_force_rpm]]). From a specified maximum allowed centrifugal force (here set to $100\,[N]$), the maximum rotation speed as a function of the sample's mass is shown in Figure [[fig:max_force_rpm]]. #+begin_src matlab F_max = 100; % Maximum accepted centrifugal forces [N] R = 0.1; M_sample = 0:1:100; M_reflector = 15; #+end_src #+begin_src matlab :exports none figure; hold on; plot(M_sample, 60/2/pi*sqrt(F_max/R./(M_sample + M_reflector))); hold off; xlim([M_sample(1), M_sample(end)]); ylim([0, 100]); xlabel('Mass of the Sample [kg]'); ylabel('Rotation Speed [rpm]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/max_force_rpm.pdf', 'width', 'wide', 'height', 'tall') #+end_src #+name: fig:max_force_rpm #+CAPTION: Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of $100\,[N]$ #+RESULTS: [[file:figs/max_force_rpm.png]]