#+TITLE: Control in the Frame of the Legs applied on the Simscape Model :DRAWER: #+STARTUP: overview #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Introduction :ignore: In this document, we apply some decentralized control to the NASS and see what level of performance can be obtained. * Decentralized Control ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('nass_model.slx'); #+end_src ** Control Schematic The control architecture is shown in Figure [[fig:decentralized_reference_tracking_L]]. The signals are: - $\bm{r}_\mathcal{X}$: wanted position of the sample with respect to the granite - $\bm{r}_{\mathcal{X}_n}$: wanted position of the sample with respect to the nano-hexapod - $\bm{r}_\mathcal{L}$: wanted length of each of the nano-hexapod's legs - $\bm{\tau}$: forces applied in each actuator - $\bm{\mathcal{L}}$: measured displacement of each leg - $\bm{\mathcal{X}}$: measured position of the sample with respect to the granite #+begin_src latex :file decentralized_reference_tracking_L.pdf \begin{tikzpicture} % Blocs \node[block={2.0cm}{2.0cm}] (P) {}; \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); \coordinate[] (outputX) at ($(P.south east)!0.7!(P.north east)$); \coordinate[] (outputL) at ($(P.south east)!0.3!(P.north east)$); \node[block, left= of inputF] (K) {$\bm{K}_\mathcal{L}$}; \node[addb={+}{}{}{}{-}, left= of K] (subr) {}; \node[block, align=center, left= of subr] (J) {Inverse\\Kinematics}; \node[block, align=center, left= of J] (Ex) {Compute\\Pos. Error}; % Connections and labels \draw[->] (outputL) -- ++(1, 0) node[above left]{$\bm{\mathcal{L}}$}; \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, -1) -| (subr.south); \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_\mathcal{L}$}; \draw[->] (K.east) -- (inputF) node[above left]{$\bm{\tau}$}; \draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$}; \draw[->] ($(outputX) + (1.4, 0)$)node[branch]{} -- ++(0, -2.5) -| (Ex.south); \draw[->] (Ex.east) -- (J.west) node[above left]{$\bm{r}_{\mathcal{X}_n}$}; \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{\mathcal{L}}$}; \draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0); \end{tikzpicture} #+end_src #+name: fig:decentralized_reference_tracking_L #+caption: Decentralized control for reference tracking #+RESULTS: [[file:figs/decentralized_reference_tracking_L.png]] ** Initialize the Simscape Model We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); #+end_src The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. #+begin_src matlab initializeNanoHexapod('actuator', 'piezo'); initializeSample('mass', 1); #+end_src We set the references that corresponds to a tomography experiment. #+begin_src matlab initializeReferences('Rz_type', 'rotating', 'Rz_period', 1); #+end_src #+begin_src matlab initializeDisturbances(); #+end_src Open Loop. #+begin_src matlab initializeController('type', 'ref-track-L'); Kl = tf(zeros(6)); #+end_src And we put some gravity. #+begin_src matlab initializeSimscapeConfiguration('gravity', true); #+end_src We log the signals. #+begin_src matlab initializeLoggingConfiguration('log', 'all'); #+end_src ** Identification of the plant Let's identify the transfer function from $\bm{\tau}$ to $\bm{\mathcal{L}}$. #+begin_src matlab %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Controller/Reference-Tracking-L/Sum'], 1, 'openoutput'); io_i = io_i + 1; % Leg length error %% Run the linearization G = linearize(mdl, io, 0); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'}; #+end_src ** Plant Analysis The diagonal and off-diagonal terms of the plant are shown in Figure [[fig:decentralized_control_plant_L]]. We can see that: - the diagonal terms have similar dynamics - the plant is decoupled at low frequency #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Diagonal elements of the Plant'); ax2 = subplot(2, 2, 3); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northwest'); ax3 = subplot(2, 2, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Off-Diagonal elements of the Plant'); ax4 = subplot(2, 2, 4); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/decentralized_control_plant_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:decentralized_control_plant_L #+caption: Transfer Functions from forces applied in each actuator $\tau_i$ to the relative motion of each leg $d\mathcal{L}_i$ ([[./figs/decentralized_control_plant_L.png][png]], [[./figs/decentralized_control_plant_L.pdf][pdf]]) [[file:figs/decentralized_control_plant_L.png]] ** Controller Design The controller consists of: - A pure integrator - An integrator up to little before the crossover - A lead around the crossover - A low pass filter with a cut-off frequency 3 times the crossover to increase the gain margin The obtained loop gains corresponding to the diagonal elements are shown in Figure [[fig:decentralized_control_L_loop_gain]]. #+begin_src matlab wc = 2*pi*20; h = 1.5; Kl = diag(1./diag(abs(freqresp(G, wc)))) * ... wc/s * ... % Pure Integrator ((s/wc*2 + 1)/(s/wc*2)) * ... % Integrator up to wc/2 1/h * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead 1/(1 + s/3/wc) * ... % Low pass Filter 1/(1 + s/3/wc); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/decentralized_control_L_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:decentralized_control_L_loop_gain #+caption: Obtained Loop Gain ([[./figs/decentralized_control_L_loop_gain.png][png]], [[./figs/decentralized_control_L_loop_gain.pdf][pdf]]) [[file:figs/decentralized_control_L_loop_gain.png]] #+begin_src matlab :exports none :tangle no isstable(feedback(G*Kl, eye(6), -1)) #+end_src We add a minus sign to the controller as it is not included in the Simscape model. #+begin_src matlab Kl = -Kl; #+end_src ** Simulation #+begin_src matlab initializeController('type', 'ref-track-L'); #+end_src #+begin_src matlab load('mat/conf_simulink.mat'); set_param(conf_simulink, 'StopTime', '2'); #+end_src #+begin_src matlab sim('nass_model'); #+end_src #+begin_src matlab decentralized_L = simout; save('./mat/tomo_exp_decentalized.mat', 'decentralized_L', '-append'); #+end_src ** Results The reference path and the position of the mobile platform are shown in Figure [[fig:decentralized_L_position_errors]]. #+begin_src matlab load('./mat/experiment_tomography.mat', 'tomo_align_dist'); load('./mat/tomo_exp_decentalized.mat', 'decentralized_L'); #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(2, 3, 1); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1)) plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 1)) hold off; xlabel('Time [s]'); ylabel('Dx [m]'); ax2 = subplot(2, 3, 2); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2)) plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 2)) hold off; xlabel('Time [s]'); ylabel('Dy [m]'); ax3 = subplot(2, 3, 3); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3)) plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 3)) hold off; xlabel('Time [s]'); ylabel('Dz [m]'); ax4 = subplot(2, 3, 4); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4)) plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 4)) hold off; xlabel('Time [s]'); ylabel('Rx [rad]'); ax5 = subplot(2, 3, 5); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5)) plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 5)) hold off; xlabel('Time [s]'); ylabel('Ry [rad]'); ax6 = subplot(2, 3, 6); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station') plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 6), 'DisplayName', 'HAC-DVF') hold off; xlabel('Time [s]'); ylabel('Rz [rad]'); legend(); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); xlim([0.5, inf]); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/decentralized_L_position_errors.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:decentralized_L_position_errors #+caption: Position Errors when using the Decentralized Control Architecture ([[./figs/decentralized_L_position_errors.png][png]], [[./figs/decentralized_L_position_errors.pdf][pdf]]) [[file:figs/decentralized_L_position_errors.png]] * HAC-LAC (IFF) Decentralized Control ** Introduction :ignore: We here add an Active Damping Loop (Integral Force Feedback) prior to using the Decentralized control architecture using $\bm{\mathcal{L}}$. ** Control Schematic The control architecture is shown in Figure [[fig:decentralized_reference_tracking_L]]. The signals are: - $\bm{r}_\mathcal{X}$: wanted position of the sample with respect to the granite - $\bm{r}_{\mathcal{X}_n}$: wanted position of the sample with respect to the nano-hexapod - $\bm{r}_\mathcal{L}$: wanted length of each of the nano-hexapod's legs - $\bm{\tau}$: forces applied in each actuator - $\bm{\mathcal{L}}$: measured displacement of each leg - $\bm{\mathcal{X}}$: measured position of the sample with respect to the granite #+begin_src latex :file decentralized_reference_tracking_iff_L.pdf \begin{tikzpicture} % Blocs \node[block={3.0cm}{3.0cm}] (P) {}; \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); \coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$); \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$); \coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$); \node[block, above= of P] (Kiff) {$\bm{K}_\text{IFF}$}; \node[addb, left= of inputF] (addF) {}; \node[block, left= of addF] (K) {$\bm{K}_\mathcal{L}$}; \node[addb={+}{}{}{}{-}, left= of K] (subr) {}; \node[block, align=center, left= of subr] (J) {Inverse\\Kinematics}; \node[block, align=center, left= of J] (Ex) {Compute\\Pos. Error}; % Connections and labels \draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$}; \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east); \draw[->] (Kiff.west) -| (addF.north); \draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$}; \draw[->] (outputL) -- ++(1, 0) node[above left]{$\bm{\mathcal{L}}$}; \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, -1) -| (subr.south); \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_\mathcal{L}$}; \draw[->] (K.east) -- (addF.west); \draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$}; \draw[->] ($(outputX) + (1.4, 0)$)node[branch]{} -- ++(0, -2.5) -| (Ex.south); \draw[->] (Ex.east) -- (J.west) node[above left]{$\bm{r}_{\mathcal{X}_n}$}; \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{\mathcal{L}}$}; \draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0); \end{tikzpicture} #+end_src #+name: fig:decentralized_reference_tracking_L #+caption: Decentralized control for reference tracking #+RESULTS: [[file:figs/decentralized_reference_tracking_L.png]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('nass_model.slx'); #+end_src ** Initialize the Simscape Model We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); #+end_src The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg. #+begin_src matlab initializeNanoHexapod('actuator', 'piezo'); initializeSample('mass', 1); #+end_src We set the references that corresponds to a tomography experiment. #+begin_src matlab initializeReferences('Rz_type', 'rotating', 'Rz_period', 1); #+end_src #+begin_src matlab initializeDisturbances(); #+end_src Open Loop. #+begin_src matlab initializeController('type', 'ref-track-L'); Kl = tf(zeros(6)); #+end_src And we put some gravity. #+begin_src matlab initializeSimscapeConfiguration('gravity', true); #+end_src We log the signals. #+begin_src matlab initializeLoggingConfiguration('log', 'all'); #+end_src ** Initialization #+begin_src matlab initializeController('type', 'ref-track-iff-L'); K_iff = tf(zeros(6)); Kl = tf(zeros(6)); #+end_src ** Identification for IFF #+begin_src matlab %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors %% Run the linearization G_iff = linearize(mdl, io, 0); G_iff.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_iff(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$\\tau_{m_%i}/\\tau_%i$', i, i)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); #+end_src ** Integral Force Feedback Controller #+begin_src matlab w0 = 2*pi*50; K_iff = -5000/s * (s/w0)/(1 + s/w0) * eye(6); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(K_iff(i,i)*G_iff(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(K_iff(i,i)*G_iff(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$L_{\\tau,%i}$', i)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab K_iff = -K_iff; #+end_src ** Identification of the damped plant #+begin_src matlab %% Name of the Simulink DehaezeFile mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Controller/Reference-Tracking-IFF-L/Sum'], 1, 'openoutput'); io_i = io_i + 1; % Leg length error %% Run the linearization Gd = linearize(mdl, io, 0); Gd.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; Gd.OutputName = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'}; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(G( i, i), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(Gd(i, i), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Diagonal elements of the Plant'); ax2 = subplot(2, 2, 3); hold on; for i = 1:6 set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*angle(squeeze(freqresp(G( i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i)); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(i, i), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northeast'); ax3 = subplot(2, 2, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); plot(freqs, abs(squeeze(freqresp(Gd(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gd(1, 1), freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Off-Diagonal elements of the Plant'); ax4 = subplot(2, 2, 4); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(1, 1), freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Diagonal elements of the Plant'); ax2 = subplot(2, 2, 3); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northwest'); ax3 = subplot(2, 2, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); title('Off-Diagonal elements of the Plant'); ax4 = subplot(2, 2, 4); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2,ax3,ax4],'x'); #+end_src ** Controller Design #+begin_src matlab wc = 2*pi*300; h = 3; Kl = diag(1./diag(abs(freqresp(Gd, wc)))) * ... ((s/(2*pi*20) + 1)/(s/(2*pi*20))) * ... % Pure Integrator ((s/(2*pi*50) + 1)/(s/(2*pi*50))) * ... % Integrator up to wc/2 1/h * (1 + s/wc*h)/(1 + s/wc/h) * ... 1/(1 + s/(2*wc)) * ... 1/(1 + s/(3*wc)); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Kl(i, i)*Gd(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*Gd(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab isstable(feedback(Gd*Kl, eye(6), -1)) #+end_src #+begin_src matlab Kl = -Kl; #+end_src ** Simulation #+begin_src matlab initializeController('type', 'ref-track-iff-L'); #+end_src #+begin_src matlab load('mat/conf_simulink.mat'); set_param(conf_simulink, 'StopTime', '2'); #+end_src #+begin_src matlab sim('nass_model'); #+end_src #+begin_src matlab decentralized_iff_L = simout; save('./mat/tomo_exp_decentalized.mat', 'decentralized_iff_L', '-append'); #+end_src ** Results #+begin_src matlab :exports none figure; ax1 = subplot(2, 3, 1); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1)) plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 1)) hold off; xlabel('Time [s]'); ylabel('Dx [m]'); ax2 = subplot(2, 3, 2); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2)) plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 2)) hold off; xlabel('Time [s]'); ylabel('Dy [m]'); ax3 = subplot(2, 3, 3); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3)) plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 3)) hold off; xlabel('Time [s]'); ylabel('Dz [m]'); ax4 = subplot(2, 3, 4); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4)) plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 4)) hold off; xlabel('Time [s]'); ylabel('Rx [rad]'); ax5 = subplot(2, 3, 5); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5)) plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 5)) hold off; xlabel('Time [s]'); ylabel('Ry [rad]'); ax6 = subplot(2, 3, 6); hold on; plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station') plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 6), 'DisplayName', 'IFF + Decentralized') hold off; xlabel('Time [s]'); ylabel('Rz [rad]'); legend(); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); xlim([0.5, inf]); #+end_src * Conclusion