<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2021-02-20 sam. 23:09 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Decentralize control to add virtual mass</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> <script> MathJax = { svg: { scale: 1, fontCache: "global" }, tex: { tags: "ams", multlineWidth: "%MULTLINEWIDTH", tagSide: "right", macros: {bm: ["\\boldsymbol{#1}",1],}, tagIndent: ".8em" } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="../../index.html"> HOME </a> </div><div id="content"> <h1 class="title">Decentralize control to add virtual mass</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org48b52bd">1. Initialization</a></li> <li><a href="#org157dc5d">2. Identification</a></li> <li><a href="#orgd072386">3. Adding Virtual Mass in the Leg’s Space</a> <ul> <li><a href="#org147b003">3.1. Plant</a></li> <li><a href="#orgacd4421">3.2. Controller Design</a></li> <li><a href="#org4c460cf">3.3. Identification of the Primary Plant</a></li> </ul> </li> <li><a href="#org3c74924">4. Adding Virtual Mass in the Task Space</a> <ul> <li><a href="#org3b61568">4.1. Plant</a></li> <li><a href="#orgf37b1c0">4.2. Controller Design</a></li> <li><a href="#orgcd22c9f">4.3. Identification of the Primary Plant</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-org48b52bd" class="outline-2"> <h2 id="org48b52bd"><span class="section-number-2">1</span> Initialization</h2> <div class="outline-text-2" id="text-1"> <div class="org-src-container"> <pre class="src src-matlab"> initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>); initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'none'</span>); initializeController(<span class="org-string">'type'</span>, <span class="org-string">'hac-dvf'</span>); </pre> </div> <p> The nano-hexapod has the following leg’s stiffness and damping. </p> <div class="org-src-container"> <pre class="src src-matlab"> initializeNanoHexapod(<span class="org-string">'k'</span>, 1e5, <span class="org-string">'c'</span>, 2e2); </pre> </div> <p> We set the stiffness of the payload fixation: </p> <div class="org-src-container"> <pre class="src src-matlab"> Kp = 1e8; <span class="org-comment">% [N/m]</span> </pre> </div> </div> </div> <div id="outline-container-org157dc5d" class="outline-2"> <h2 id="org157dc5d"><span class="section-number-2">2</span> Identification</h2> <div class="outline-text-2" id="text-2"> <p> We identify the system for the following payload masses: </p> <div class="org-src-container"> <pre class="src src-matlab"> Ms = [1, 10, 50]; </pre> </div> <p> Identification of the transfer function from \(\tau\) to \(d\mathcal{L}\). Identification of the Primary plant without virtual add of mass </p> </div> </div> <div id="outline-container-orgd072386" class="outline-2"> <h2 id="orgd072386"><span class="section-number-2">3</span> Adding Virtual Mass in the Leg’s Space</h2> <div class="outline-text-2" id="text-3"> </div> <div id="outline-container-org147b003" class="outline-3"> <h3 id="org147b003"><span class="section-number-3">3.1</span> Plant</h3> <div class="outline-text-3" id="text-3-1"> <div id="org74dce28" class="figure"> <p><img src="figs/virtual_mass_plant_L.png" alt="virtual_mass_plant_L.png" /> </p> <p><span class="figure-number">Figure 1: </span>Transfer function from \(\tau_i\) to \(d\mathcal{L}_i\) for three payload masses</p> </div> </div> </div> <div id="outline-container-orgacd4421" class="outline-3"> <h3 id="orgacd4421"><span class="section-number-3">3.2</span> Controller Design</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab"> Kdvf = 10<span class="org-type">*</span>s<span class="org-type">^</span>2<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500)<span class="org-type">^</span>2<span class="org-type">*</span>eye(6); </pre> </div> <div id="orgdf2df59" class="figure"> <p><img src="figs/virtual_mass_loop_gain_L.png" alt="virtual_mass_loop_gain_L.png" /> </p> <p><span class="figure-number">Figure 2: </span>Loop Gain for the addition of virtual mass in the leg’s space</p> </div> </div> </div> <div id="outline-container-org4c460cf" class="outline-3"> <h3 id="org4c460cf"><span class="section-number-3">3.3</span> Identification of the Primary Plant</h3> <div class="outline-text-3" id="text-3-3"> <div id="org29e9333" class="figure"> <p><img src="figs/virtual_mass_L_primary_plant_X.png" alt="virtual_mass_L_primary_plant_X.png" /> </p> <p><span class="figure-number">Figure 3: </span>Comparison of the transfer function from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) with and without the virtual addition of mass in the leg’s space</p> </div> <div id="orgd96256a" class="figure"> <p><img src="figs/virtual_mass_L_primary_plant_L.png" alt="virtual_mass_L_primary_plant_L.png" /> </p> <p><span class="figure-number">Figure 4: </span>Comparison of the transfer function from \(\tau_i\) to \(\mathcal{L}_{i}\) with and without the virtual addition of mass in the leg’s space</p> </div> </div> </div> </div> <div id="outline-container-org3c74924" class="outline-2"> <h2 id="org3c74924"><span class="section-number-2">4</span> Adding Virtual Mass in the Task Space</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-org3b61568" class="outline-3"> <h3 id="org3b61568"><span class="section-number-3">4.1</span> Plant</h3> <div class="outline-text-3" id="text-4-1"> <p> Let’s look at the transfer function from \(\bm{\mathcal{F}}\) to \(d\bm{\mathcal{X}}\): \[ \frac{d\bm{\mathcal{L}}}{\bm{\mathcal{F}}} = \bm{J}^{-1} \frac{d\bm{\mathcal{L}}}{\bm{\tau}} \bm{J}^{-T} \] </p> <div id="orgb509352" class="figure"> <p><img src="figs/virtual_mass_plant_X.png" alt="virtual_mass_plant_X.png" /> </p> <p><span class="figure-number">Figure 5: </span>Dynamics from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) used for virtual mass addition in the task space</p> </div> </div> </div> <div id="outline-container-orgf37b1c0" class="outline-3"> <h3 id="orgf37b1c0"><span class="section-number-3">4.2</span> Controller Design</h3> <div class="outline-text-3" id="text-4-2"> <div class="org-src-container"> <pre class="src src-matlab"> KmX = (s<span class="org-type">^</span>2<span class="org-type">*</span>1<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500)<span class="org-type">^</span>2<span class="org-type">*</span>diag([1 1 50 0 0 0])); </pre> </div> <div id="org18b3b14" class="figure"> <p><img src="figs/virtual_mass_loop_gain_X.png" alt="virtual_mass_loop_gain_X.png" /> </p> <p><span class="figure-number">Figure 6: </span>Loop gain for virtual mass addition in the task space</p> </div> <div class="org-src-container"> <pre class="src src-matlab"> Kdvf = inv(nano_hexapod.kinematics.J<span class="org-type">'</span>)<span class="org-type">*</span>KmX<span class="org-type">*</span>inv(nano_hexapod.kinematics.J); </pre> </div> </div> </div> <div id="outline-container-orgcd22c9f" class="outline-3"> <h3 id="orgcd22c9f"><span class="section-number-3">4.3</span> Identification of the Primary Plant</h3> <div class="outline-text-3" id="text-4-3"> <div id="orgfde1133" class="figure"> <p><img src="figs/virtual_mass_X_primary_plant_X.png" alt="virtual_mass_X_primary_plant_X.png" /> </p> <p><span class="figure-number">Figure 7: </span>Comparison of the transfer function from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) with and without the virtual addition of mass in the task space</p> </div> <div id="org095b9cd" class="figure"> <p><img src="figs/virtual_mass_X_primary_plant_L.png" alt="virtual_mass_X_primary_plant_L.png" /> </p> <p><span class="figure-number">Figure 8: </span>Comparison of the transfer function from \(\tau_i\) to \(\mathcal{L}_{i}\) with and without the virtual addition of mass in the task space</p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2021-02-20 sam. 23:09</p> </div> </body> </html>