UP | HOME

Active Damping applied on the Simscape Model

Table of Contents

First, in section 1, we will looked at the undamped system.

Then, we will compare three active damping techniques:

For each of the active damping technique, we will:

The disturbances are:

1 Undamped System

All the files (data and Matlab scripts) are accessible here.

We first look at the undamped system. The performance of this undamped system will be compared with the damped system using various techniques.

1.1 Identification of the dynamics for Active Damping

1.1.1 Initialize the Simulation

We initialize all the stages with the default parameters.

initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();

The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.

initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 50);

We set the references to zero.

initializeReferences();

And all the controllers are set to 0.

K = tf(zeros(6));
save('./mat/controllers.mat', 'K', '-append');
K_ine = tf(zeros(6));
save('./mat/controllers.mat', 'K_ine', '-append');
K_iff = tf(zeros(6));
save('./mat/controllers.mat', 'K_iff', '-append');
K_dvf = tf(zeros(6));
save('./mat/controllers.mat', 'K_dvf', '-append');

1.1.2 Identification

First, we identify the dynamics of the system using the linearize function.

%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;

%% Name of the Simulink File
mdl = 'sim_nass_active_damping';

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fnl'],           1, 'openinput');              io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Vlm');  io_i = io_i + 1;

%% Run the linearization
G = linearize(mdl, io, options);
G.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
                'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ...
                'Vnlm1', 'Vnlm2', 'Vnlm3', 'Vnlm4', 'Vnlm5', 'Vnlm6'};

We then create transfer functions corresponding to the active damping plants.

G_iff = minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}));
G_dvf = minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}));
G_ine = minreal(G({'Vnlm1', 'Vnlm2', 'Vnlm3', 'Vnlm4', 'Vnlm5', 'Vnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}));

And we save them for further analysis.

save('./active_damping/mat/undamped_plants.mat', 'G_iff', 'G_dvf', 'G_ine');

1.1.3 Obtained Plants for Active Damping

nass_active_damping_iff_plant.png

Figure 1: G_iff: IFF Plant (png, pdf)

nass_active_damping_ine_plant.png

Figure 2: G_dvf: Plant for Direct Velocity Feedback (png, pdf)

nass_active_damping_inertial_plant.png

Figure 3: Inertial Feedback Plant (png, pdf)

1.2 Tomography Experiment

1.2.1 Simulation

We initialize elements for the tomography experiment.

prepareTomographyExperiment();

We change the simulation stop time.

load('mat/conf_simscape.mat');
set_param(conf_simscape, 'StopTime', '3');

And we simulate the system.

sim('sim_nass_active_damping');

Finally, we save the simulation results for further analysis

save('./active_damping/mat/tomo_exp.mat', 'En', 'Eg', '-append');

1.2.2 Results

We load the results of tomography experiments.

load('./active_damping/mat/tomo_exp.mat', 'En');
t = linspace(0, 3, length(En(:,1)));

nass_act_damp_undamped_sim_tomo_trans.png

Figure 4: Position Error during tomography experiment - Translations (png, pdf)

nass_act_damp_undamped_sim_tomo_rot.png

Figure 5: Position Error during tomography experiment - Rotations (png, pdf)

2 Integral Force Feedback

All the files (data and Matlab scripts) are accessible here.

Integral Force Feedback is applied on the simscape model.

2.1 Control Design

2.1.1 Plant

Let’s load the previously indentified undamped plant:

load('./active_damping/mat/undamped_plants.mat', 'G_iff');

Let’s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure 6).

iff_plant.png

Figure 6: Transfer function from forces applied in the legs to force sensor (png, pdf)

2.1.2 Control Design

The controller for each pair of actuator/sensor is:

K_iff = 1000/s;

The corresponding loop gains are shown in figure 7.

iff_open_loop.png

Figure 7: Loop Gain for the Integral Force Feedback (png, pdf)

2.1.3 Diagonal Controller

We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.

K_iff = -K_iff*eye(6);

We save the controller for further analysis.

save('./active_damping/mat/K_iff.mat', 'K_iff');

2.2 Tomography Experiment

2.2.1 Initialize the Simulation

We initialize elements for the tomography experiment.

prepareTomographyExperiment();

We set the IFF controller.

load('./active_damping/mat/K_iff.mat', 'K_iff');
save('./mat/controllers.mat', 'K_iff', '-append');

2.2.2 Simulation

We change the simulation stop time.

load('mat/conf_simscape.mat');
set_param(conf_simscape, 'StopTime', '3');

And we simulate the system.

sim('sim_nass_active_damping');

Finally, we save the simulation results for further analysis

En_iff = En;
Eg_iff = Eg;
save('./active_damping/mat/tomo_exp.mat', 'En_iff', 'Eg_iff', '-append');

2.2.3 Compare with Undamped system

We load the results of tomography experiments.

load('./active_damping/mat/tomo_exp.mat', 'En', 'En_iff');
t = linspace(0, 3, length(En(:,1)));

nass_act_damp_iff_sim_tomo_trans.png

Figure 8: Position Error during tomography experiment - Translations (png, pdf)

nass_act_damp_iff_sim_tomo_rot.png

Figure 9: Position Error during tomography experiment - Rotations (png, pdf)

2.3 Conclusion

Integral Force Feedback:

  • Robust (guaranteed stability)
  • Acceptable Damping
  • Increase the sensitivity to disturbances at low frequencies

3 Direct Velocity Feedback

All the files (data and Matlab scripts) are accessible here.

In the Direct Velocity Feedback (DVF), a derivative feedback is applied between the measured actuator displacement to the actuator force input. The actuator displacement can be measured with a capacitive sensor for instance.

3.1 Control Design

3.1.1 Plant

Let’s load the undamped plant:

load('./active_damping/mat/undamped_plants.mat', 'G_dvf');

Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure 10).

dvf_plant.png

Figure 10: Transfer function from forces applied in the legs to leg displacement sensor (png, pdf)

3.1.2 Control Design

The Direct Velocity Feedback is defined below. A Low pass Filter is added to make the controller transfer function proper.

K_dvf = s*20000/(1 + s/2/pi/10000);

The obtained loop gains are shown in figure 11.

dvf_open_loop.png

Figure 11: Loop Gain for the Integral Force Feedback (png, pdf)

3.1.3 Diagonal Controller

We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.

K_dvf = -K_dvf*eye(6);

We save the controller for further analysis.

save('./active_damping/mat/K_dvf.mat', 'K_dvf');

3.2 Tomography Experiment

3.2.1 Initialize the Simulation

We initialize elements for the tomography experiment.

prepareTomographyExperiment();

We set the DVF controller.

load('./active_damping/mat/K_dvf.mat', 'K_dvf');
save('./mat/controllers.mat', 'K_dvf', '-append');

3.2.2 Simulation

We change the simulation stop time.

load('mat/conf_simscape.mat');
set_param(conf_simscape, 'StopTime', '3');

And we simulate the system.

sim('sim_nass_active_damping');

Finally, we save the simulation results for further analysis

En_dvf = En;
Eg_dvf = Eg;
save('./active_damping/mat/tomo_exp.mat', 'En_dvf', 'Eg_dvf', '-append');

3.2.3 Compare with Undamped system

We load the results of tomography experiments.

load('./active_damping/mat/tomo_exp.mat', 'En', 'En_dvf');
t = linspace(0, 3, length(En(:,1)));

nass_act_damp_dvf_sim_tomo_trans.png

Figure 12: Position Error during tomography experiment - Translations (png, pdf)

nass_act_damp_dvf_sim_tomo_rot.png

Figure 13: Position Error during tomography experiment - Rotations (png, pdf)

3.3 Conclusion

Direct Velocity Feedback:

4 Inertial Control

All the files (data and Matlab scripts) are accessible here.

In Inertial Control, a feedback is applied between the measured absolute velocity of the platform to the actuator force input.

4.1 Control Design

4.1.1 Plant

Let’s load the undamped plant:

load('./active_damping/mat/undamped_plants.mat', 'G_ine');

Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure 14).

ine_plant.png

Figure 14: Transfer function from forces applied in the legs to leg velocity sensor (png, pdf)

4.1.2 Control Design

The controller is defined below and the obtained loop gain is shown in figure 15.

K_ine = 1e3/(1+s/(2*pi*100));

ine_open_loop_gain.png

Figure 15: Loop Gain for Inertial Control (png, pdf)

4.1.3 Diagonal Controller

We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.

K_ine = -K_ine*eye(6);

We save the controller for further analysis.

save('./active_damping/mat/K_ine.mat', 'K_ine');

4.2 Tomography Experiment

4.2.1 Initialize the Simulation

We initialize elements for the tomography experiment.

prepareTomographyExperiment();

We set the Inertial controller.

load('./active_damping/mat/K_ine.mat', 'K_ine');
save('./mat/controllers.mat', 'K_ine', '-append');

4.2.2 Simulation

We change the simulation stop time.

load('mat/conf_simscape.mat');
set_param(conf_simscape, 'StopTime', '3');

And we simulate the system.

sim('sim_nass_active_damping');

Finally, we save the simulation results for further analysis

En_ine = En;
Eg_ine = Eg;
save('./active_damping/mat/tomo_exp.mat', 'En_ine', 'Eg_ine', '-append');

4.2.3 Compare with Undamped system

We load the results of tomography experiments.

load('./active_damping/mat/tomo_exp.mat', 'En', 'En_ine');
t = linspace(0, 3, length(En_ine(:,1)));

nass_act_damp_ine_sim_tomo_trans.png

Figure 16: Position Error during tomography experiment - Translations (png, pdf)

nass_act_damp_ine_sim_tomo_rot.png

Figure 17: Position Error during tomography experiment - Rotations (png, pdf)

4.3 Conclusion

Inertial Control:

5 Comparison

5.1 Load the plants

load('./active_damping/mat/plants.mat', 'G', 'G_iff', 'G_ine', 'G_dvf');

5.2 Sensitivity to Disturbance

sensitivity_comp_ground_motion_z.png

Figure 18: caption (png, pdf)

sensitivity_comp_direct_forces_z.png

Figure 19: caption (png, pdf)

sensitivity_comp_spindle_z.png

Figure 20: caption (png, pdf)

sensitivity_comp_ty_z.png

Figure 21: caption (png, pdf)

sensitivity_comp_ty_x.png

Figure 22: caption (png, pdf)

5.3 Damped Plant

plant_comp_damping_z.png

Figure 23: Plant for the \(z\) direction for different active damping technique used (png, pdf)

plant_comp_damping_x.png

Figure 24: Plant for the \(x\) direction for different active damping technique used (png, pdf)

plant_comp_damping_coupling.png

Figure 25: Comparison of one off-diagonal plant for different damping technique applied (png, pdf)

5.4 Tomography Experiment

load('./active_damping/mat/tomo_exp.mat', 'En', 'En_iff', 'En_dvf', 'En_ine');
t = linspace(0, 3, length(En(:,1)));
rms(sqrt(En(:, 1).^2     + En(:, 2).^2     + En(:, 3).^2))
rms(sqrt(En_ine(:, 1).^2 + En_ine(:, 2).^2 + En_ine(:, 3).^2))
rms(sqrt(En_dvf(:, 1).^2 + En_dvf(:, 2).^2 + En_dvf(:, 3).^2))
rms(sqrt(En_iff(:, 1).^2 + En_iff(:, 2).^2 + En_iff(:, 3).^2))

5.4.1 Frequency Domain

Ts = t(1); % Sample Time for the Data [s]

n_av = 8;
han_win = hanning(ceil(length(En(:, 1))/n_av));

[pdx, f] = pwelch(Ern(:, 1), han_win, [], [], 1/Ts);

6 Useful Functions

6.1 prepareTomographyExperiment

This Matlab function is accessible here.

6.1.1 Function Description

function [] = prepareTomographyExperiment(args)

6.1.2 Optional Parameters

arguments
    args.nass_actuator       char   {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
    args.sample_mass   (1,1) double {mustBeNumeric, mustBePositive} = 50
    args.Ry_period     (1,1) double {mustBeNumeric, mustBePositive} = 1
end

6.1.3 Initialize the Simulation

We initialize all the stages with the default parameters.

initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();

The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.

initializeNanoHexapod('actuator', args.nass_actuator);
initializeSample('mass', args.sample_mass);

We set the references to zero.

initializeReferences('Rz_type', 'rotating', 'Rz_period', args.Ry_period);

And all the controllers are set to 0.

K = tf(zeros(6));
save('./mat/controllers.mat', 'K', '-append');
K_ine = tf(zeros(6));
save('./mat/controllers.mat', 'K_ine', '-append');
K_iff = tf(zeros(6));
save('./mat/controllers.mat', 'K_iff', '-append');
K_dvf = tf(zeros(6));
save('./mat/controllers.mat', 'K_dvf', '-append');

Author: Dehaeze Thomas

Created: 2020-01-15 mer. 16:22