<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-05-05 mar. 10:34 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Centrifugal Forces</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script>MathJax = { tex: { tags: 'ams', macros: {bm: ["\\boldsymbol{#1}",1],} } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Centrifugal Forces</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org49834ed">1. Parameters</a></li> <li><a href="#org4b7747e">2. Centrifugal forces for light and heavy sample</a></li> <li><a href="#org92c9f54">3. Centrifugal forces as a function of the rotation speed</a></li> <li><a href="#orgb7f1acf">4. Maximum rotation speed as a function of the mass</a></li> </ul> </div> </div> <p> In this document, we wish to estimate the centrifugal forces due to the spindle’s rotation when the sample’s center of mass is off-centered with respect to the rotation axis. </p> <p> This is the case then the sample is moved by the micro-hexapod. </p> <p> The centrifugal forces are defined as represented Figure <a href="#orgd84fe6e">1</a> where: </p> <ul class="org-ul"> <li>\(M\) is the total mass of the rotating elements in \([kg]\)</li> <li>\(\omega\) is the rotation speed in \([rad/s]\)</li> <li>\(r\) is the distance to the rotation axis in \([m]\)</li> </ul> <div id="orgd84fe6e" class="figure"> <p><img src="./figs/centrifugal.png" alt="centrifugal.png" /> </p> <p><span class="figure-number">Figure 1: </span>Centrifugal forces</p> </div> <div id="outline-container-org49834ed" class="outline-2"> <h2 id="org49834ed"><span class="section-number-2">1</span> Parameters</h2> <div class="outline-text-2" id="text-1"> <p> We define some parameters for the computation. </p> <p> The mass of the sample can vary from \(1\,kg\) to \(50\,kg\) to which is added to mass of the metrology reflector and the nano-hexapod’s top platform (here set to \(15\,kg\)). </p> <div class="org-src-container"> <pre class="src src-matlab">M_light = 16; % mass of excentred parts mooving [kg] M_heavy = 65; % [kg] </pre> </div> <p> For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm. </p> <div class="org-src-container"> <pre class="src src-matlab">w_light = 2*pi; % rotational speed [rad/s] w_heavy = 2*pi/60; % rotational speed [rad/s] </pre> </div> <p> Finally, we consider a mass eccentricity of \(10\,mm\). </p> <div class="org-src-container"> <pre class="src src-matlab">R = 0.1; % Excentricity [m] </pre> </div> </div> </div> <div id="outline-container-org4b7747e" class="outline-2"> <h2 id="org4b7747e"><span class="section-number-2">2</span> Centrifugal forces for light and heavy sample</h2> <div class="outline-text-2" id="text-2"> <p> From the formula \(F_c = m \omega^2 r\), we obtain the values shown below. </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Force [N]</th> </tr> </thead> <tbody> <tr> <td class="org-left">light</td> <td class="org-right">63.2</td> </tr> <tr> <td class="org-left">heavy</td> <td class="org-right">0.1</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org92c9f54" class="outline-2"> <h2 id="org92c9f54"><span class="section-number-2">3</span> Centrifugal forces as a function of the rotation speed</h2> <div class="outline-text-2" id="text-3"> <p> The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure <a href="#orgfaf795f">2</a>. </p> <div id="orgfaf795f" class="figure"> <p><img src="figs/centrifugal_forces_rpm.png" alt="centrifugal_forces_rpm.png" /> </p> <p><span class="figure-number">Figure 2: </span>Centrifugal forces function of the rotation speed</p> </div> </div> </div> <div id="outline-container-orgb7f1acf" class="outline-2"> <h2 id="orgb7f1acf"><span class="section-number-2">4</span> Maximum rotation speed as a function of the mass</h2> <div class="outline-text-2" id="text-4"> <p> We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure <a href="#org6ee8f38">3</a>). </p> <p> From a specified maximum allowed centrifugal force (here set to \(100\,[N]\)), the maximum rotation speed as a function of the sample’s mass is shown in Figure <a href="#org6ee8f38">3</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">F_max = 100; % Maximum accepted centrifugal forces [N] R = 0.1; M_sample = 0:1:100; M_reflector = 15; </pre> </div> <div id="org6ee8f38" class="figure"> <p><img src="figs/max_force_rpm.png" alt="max_force_rpm.png" /> </p> <p><span class="figure-number">Figure 3: </span>Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of \(100\,[N]\)</p> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-05-05 mar. 10:34</p> </div> </body> </html>