#+TITLE: Metrology :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html # #+HTML_HEAD: # #+HTML_HEAD: # #+HTML_HEAD: # #+HTML_HEAD: # #+HTML_HEAD: # #+HTML_HEAD: # #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src #+begin_src matlab % open 'simscape/sim_nano_station_tomo.slx' #+end_src * Test with Simulink #+begin_src matlab load('simscape/conf_simscape.mat'); #+end_src #+begin_src matlab initializeReferences(struct('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1)); % initializeReferences(); #+end_src * TODO Tests on the transformation from reference to wanted position - [X] Are the rotation matrix commutable? => no - [X] How to express the measured rotation errors? => screw axis coordinate seems nice (used in Taghirad's book) - [ ] Should ask Veijo how he specifies the position of the Symetrie Hexapod - [ ] Create functions for all distinct part and then include that in Simulink - [ ] How the express the orientation error? - [ ] If we use screw coordinate, can we add/subtract them? - [ ] Do some simple tests to verify that the algorithm is working fine ** Introduction :ignore: #+begin_quote Rx = [1 0 0; 0 cos(t) -sin(t); 0 sin(t) cos(t)]; Ry = [ cos(t) 0 sin(t); 0 1 0; -sin(t) 0 cos(t)]; Rz = [cos(t) -sin(t) 0; sin(t) cos(t) 0; 0 0 1]; #+end_quote Let's define the following frames: - $\{W\}$ the frame that is *fixed to the granite* and its origin at the theoretical meeting point between the X-ray and the spindle axis. - $\{S\}$ the frame *attached to the sample* (in reality attached to the top platform of the nano-hexapod) with its origin at 175mm above the top platform of the nano-hexapod. Its origin is $O_S$. - $\{T\}$ the theoretical wanted frame that correspond to the wanted pose of the frame $\{S\}$. $\{T\}$ is computed from the wanted position of each stage. It is thus theoretical and does not correspond to a real position. The origin of $T$ is $O_T$ and is the wanted position of the sample. Thus: - the *measurement* of the position of the sample corresponds to ${}^W O_S = \begin{bmatrix} {}^WP_{x,m} & {}^WP_{y,m} & {}^WP_{z,m} \end{bmatrix}^T$ in translation and to $\theta_m {}^W\bm{s}_m = \theta_m \cdot \begin{bmatrix} {}^Ws_{x,m} & {}^Ws_{y,m} & {}^Ws_{z,m} \end{bmatrix}^T$ in rotations - the *wanted position* of the sample expressed w.r.t. the granite is ${}^W O_T = \begin{bmatrix} {}^WP_{x,r} & {}^WP_{y,r} & {}^WP_{z,r} \end{bmatrix}^T$ in translation and to $\theta_r {}^W\bm{s}_r = \theta_r \cdot \begin{bmatrix} {}^Ws_{x,r} & {}^Ws_{y,r} & {}^Ws_{z,r} \end{bmatrix}^T$ in rotations ** Wanted Position of the Sample with respect to the Granite Let's define the wanted position of each stage. #+begin_src matlab Ty = 0; % [m] Ry = 3*pi/180; % [rad] Rz = 180*pi/180; % [rad] % Hexapod (first consider only translations) Thx = 0; % [m] Thy = 0; % [m] Thz = 0; % [m] #+end_src Now, we compute the corresponding wanted translation and rotation of the sample with respect to the granite frame $\{W\}$. This corresponds to ${}^WO_T$ and $\theta_m {}^Ws_m$. To do so, we have to define the homogeneous transformation for each stage. #+begin_src matlab % Translation Stage Rty = [1 0 0 0; 0 1 0 Ty; 0 0 1 0; 0 0 0 1]; % Tilt Stage - Pure rotating aligned with Ob Rry = [ cos(Ry) 0 sin(Ry) 0; 0 1 0 0; -sin(Ry) 0 cos(Ry) 0; 0 0 0 1]; % Spindle - Rotation along the Z axis Rrz = [cos(Rz) -sin(Rz) 0 0 ; sin(Rz) cos(Rz) 0 0 ; 0 0 1 0 ; 0 0 0 1 ]; % Micro-Hexapod (only rotations first) Rh = [1 0 0 Thx ; 0 1 0 Thy ; 0 0 1 Thz ; 0 0 0 1 ]; #+end_src We combine the individual homogeneous transformations into one homogeneous transformation for all the station. #+begin_src matlab Ttot = Rty*Rry*Rrz*Rh; #+end_src Using this homogeneous transformation, we can compute the wanted position and orientation of the sample with respect to the granite. Translation. #+begin_src matlab WOr = Ttot*[0;0;0;1]; WOr = WOr(1:3); #+end_src Rotation. #+begin_src matlab thetar = acos((trace(Ttot(1:3, 1:3))-1)/2) if thetar == 0 WSr = [0; 0; 0]; else [V, D] = eig(Ttot(1:3, 1:3)); WSr = thetar*V(:, abs(diag(D) - 1) < eps(1)); end #+end_src #+begin_src matlab WPr = [WOr ; WSr]; #+end_src ** Measured Position of the Sample with respect to the Granite The measurement of the position of the sample using the metrology system gives the position and orientation of the sample with respect to the granite. #+begin_src matlab % Measurements: Xm, Ym, Zm, Rx, Ry, Rz Dxm = 0; % [m] Dym = 0; % [m] Dzm = 0; % [m] Rxm = 0*pi/180; % [rad] Rym = 0*pi/180; % [rad] Rzm = 180*pi/180; % [rad] #+end_src Let's compute the corresponding orientation using screw axis. #+begin_src matlab Trxm = [1 0 0; 0 cos(Rxm) -sin(Rxm); 0 sin(Rxm) cos(Rxm)]; Trym = [ cos(Rym) 0 sin(Rym); 0 1 0; -sin(Rym) 0 cos(Rym)]; Trzm = [cos(Rzm) -sin(Rzm) 0; sin(Rzm) cos(Rzm) 0; 0 0 1]; STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1]; #+end_src We then obtain the orientation measurement in the form of screw coordinate $\theta_m ({}^Ws_{x,m},\ {}^Ws_{y,m},\ {}^Ws_{z,m})^T$ where: - $\theta_m = \cos^{-1} \frac{\text{Tr}(R) - 1}{2}$ - ${}^W\bm{s}_m$ is the eigen vector of the rotation matrix $R$ corresponding to the eigen value $\lambda = 1$ #+begin_src matlab thetam = acos((trace(STw(1:3, 1:3))-1)/2); % [rad] if thetam == 0 WSm = [0; 0; 0]; else [V, D] = eig(STw(1:3, 1:3)); WSm = thetam*V(:, abs(diag(D) - 1) < eps(1)); end #+end_src #+begin_src matlab WPm = [Dxm ; Dym ; Dzm ; WSm]; #+end_src ** Positioning Error with respect to the Granite The wanted position expressed with respect to the granite is ${}^WO_T$ and the measured position with respect to the granite is ${}^WO_S$, thus the *position error* expressed in $\{W\}$ is \[ {}^W E = {}^W O_T - {}^W O_S \] The same is true for rotations: \[ \theta_\epsilon {}^W\bm{s}_\epsilon = \theta_r {}^W\bm{s}_r - \theta_m {}^W\bm{s}_m \] #+begin_src matlab WPe = WPr - WPm; #+end_src #+begin_quote Now we want to express this error in a frame attached to the *base of the nano-hexapod* with its origin at the same point where the Jacobian of the nano-hexapod is computed (175mm above the top platform + 90mm of total height of the nano-hexapod). Or maybe should we want to express this error with respect to the *top platform of the nano-hexapod*? We are measuring the position of the top-platform, and we don't know exactly the position of the bottom platform. We could compute the position of the bottom platform in two ways: - from the encoders of each stage - from the measurement of the nano-hexapod top platform + the internal metrology in the nano-hexapod (capacitive sensors e.g) A third option is to say that the maximum stroke of the nano-hexapod is so small that the error should no change to much by the change of base. #+end_quote ** Position Error Expressed in the Nano-Hexapod Frame We now want the position error to be expressed in $\{S\}$ (the frame attach to the sample) for control: \[ {}^S E = {}^S T_W \cdot {}^W E \] Thus we need to compute the homogeneous transformation ${}^ST_W$. Fortunately, this homogeneous transformation can be computed from the measurement of the sample position and orientation with respect to the granite. #+begin_src matlab Trxm = [1 0 0; 0 cos(Rxm) -sin(Rxm); 0 sin(Rxm) cos(Rxm)]; Trym = [ cos(Rym) 0 sin(Rym); 0 1 0; -sin(Rym) 0 cos(Rym)]; Trzm = [cos(Rzm) -sin(Rzm) 0; sin(Rzm) cos(Rzm) 0; 0 0 1]; STw = [[ Trym*Trxm*Trzm , [Dxm; Dym; Dzm]]; 0 0 0 1]; #+end_src Translation Error. #+begin_src matlab SEm = STw * [WPe(1:3); 0]; SEm = SEm(1:3); #+end_src Rotation Error. #+begin_src matlab SEr = STw * [WPe(4:6); 0]; SEr = SEr(1:3); #+end_src #+begin_src matlab Etot = [SEm ; SEr] #+end_src ** Another try Let's denote: - $\{W\}$ the initial fixed frame - $\{R\}$ the reference frame corresponding to the wanted pose of the sample - $\{M\}$ the frame corresponding to the measured pose of the sample We have then computed: - ${}^WT_R$ - ${}^WT_M$ We have: \begin{align} {}^MT_R &= {}^MT_W {}^WT_R \\ &= {}^WT_M^t {}^WT_R \end{align} #+begin_src matlab MTr = STw'*Ttot; #+end_src Position error: #+begin_src matlab MTr(1:3, 1:4)*[0; 0; 0; 1] #+end_src Orientation error: #+begin_src matlab MTr(1:3, 1:3) #+end_src ** Verification How can we verify that the computation is correct? Options: - Test with simscape multi-body - Impose motion on each stage - Measure the position error w.r.t. the NASS - Compare with the computation