#+TITLE: Noise Budgeting #+SETUPFILE: ./setup/org-setup-file.org * Maximum Noise of the Relative Motion Sensors ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+BEGIN_SRC matlab simulinkproject('../'); #+END_SRC ** Initialization #+begin_src matlab open('nass_model.slx'); #+end_src #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'hac-dvf'); #+end_src We set the stiffness of the payload fixation: #+begin_src matlab Kp = 1e8; % [N/m] #+end_src #+begin_src matlab initializeNanoHexapod('k', 1e5, 'c', 2e2); Ms = 50; initializeSample('mass', Ms, 'freq', sqrt(Kp/Ms)/2/pi*ones(6,1)); #+end_src #+begin_src matlab initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms); #+end_src ** Control System #+begin_src matlab Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6); #+end_src #+begin_src matlab h = 2.0; Kl = 2e7 * eye(6) * ... 1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ... 1/h*(s/(2*pi*200/h) + 1)/(s/(2*pi*200*h) + 1) * ... (s/2/pi/10 + 1)/(s/2/pi/10) * ... 1/(1 + s/2/pi/300); #+end_src #+begin_src matlab load('mat/stages.mat', 'nano_hexapod'); K = Kl*nano_hexapod.kinematics.J*diag([1, 1, 1, 1, 1, 0]); #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'nass_model'; %% Micro-Hexapod clear io; io_i = 1; io(io_i) = linio([mdl, '/Noises'], 1, 'openinput', [], 'ndL'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; #+end_src #+begin_src matlab %% Run the linearization G = linearize(mdl, io); G.InputName = {'ndL1', 'ndL2', 'ndL3', 'ndL4', 'ndL5', 'ndL6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; hold on; plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G(3, 3), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G(4, 4), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G(6, 5), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/m]'); set(gca, 'XTickLabel',[]); #+end_src ** Maximum induced vibration's ASD Required maximum induced ASD of the sample's vibration due to the relative motion sensor noise. \[ \bm{\Gamma}_x(\omega) = \begin{bmatrix} \Gamma_x(\omega) & \Gamma_y(\omega) & \Gamma_{R_x}(\omega) & \Gamma_{R_y}(\omega) \end{bmatrix} \] #+begin_src matlab Gamma_x = [(1e-9)/(1 + s/2/pi/100); % Dx (1e-9)/(1 + s/2/pi/100); % Dy (1e-9)/(1 + s/2/pi/100); % Dz (2e-8)/(1 + s/2/pi/100); % Rx (2e-8)/(1 + s/2/pi/100)]; % Ry #+end_src #+begin_src matlab freqs = logspace(0, 3, 1000); #+end_src Corresponding RMS value in [nm rms, nrad rms] #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2))]', {'Dx [nm]', 'Dy [nm]', 'Dz [nm]', 'Rx [nrad]', 'Ry [nrad]'}, {'Specifications'}, ' %.1f '); #+end_src #+RESULTS: | | Specifications | |-----------+----------------| | Dx [nm] | 12.1 | | Dy [nm] | 12.1 | | Dz [nm] | 12.1 | | Rx [nrad] | 241.8 | | Ry [nrad] | 241.8 | ** Computation of the maximum relative motion sensor noise Let's note $G$ the transfer function from the 6 sensor noise $n$ to the 5dof pose error $x$. We have: \[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \] In terms of ASD: \[ \Gamma_{x_i}(\omega) = \sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2 \cdot {\Gamma_{n_j}}^2(\omega)}, \quad i = 1 \dots 5 \] Let's suppose that the ASD of all the sensor noise are equal: \[ \Gamma_{n_j} = \Gamma_{n}, \quad j = 1 \dots 6 \] We then have an upper bound of the sensor noise for each of the considered motion errors: \[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{x_i}(\omega)}{\sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}}, \quad i = 1 \dots 5 \] #+begin_src matlab Gamma_ndL = zeros(5, length(freqs)); for in = 1:5 Gamma_ndL(in, :) = abs(squeeze(freqresp(Gamma_x(in), freqs, 'Hz')))./sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2))'; end #+end_src #+begin_src matlab :exports none figure; hold on; for in = 1:5 plot(freqs, Gamma_ndL(in, :), 'k-'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{m}{\sqrt{Hz}}$]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/noise_budget_ndL_max_asd.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:noise_budget_ndL_max_asd #+caption: Maximum estimated ASD of the relative motion sensor noise #+RESULTS: [[file:figs/noise_budget_ndL_max_asd.png]] If the noise ASD of the relative motion sensor is bellow the maximum specified ASD for all the considered motion: \[ \Gamma_n < \Gamma_{n_i, \text{max}}, \quad i = 1 \dots 5 \] Then, the motion error due to sensor noise should be bellow the one specified. #+begin_src matlab Gamma_ndL_max = min(Gamma_ndL(1:5, :)); #+end_src Let's take a sensor with a white noise up to 1kHz that is bellow the specified one: #+begin_src matlab Gamma_ndL_ex = abs(squeeze(freqresp(min(Gamma_ndL_max)/(1 + s/2/pi/1e3), freqs, 'Hz'))); #+end_src #+begin_src matlab :exports none figure; hold on; plot(freqs, Gamma_ndL_max, 'k-', 'DisplayName', 'Specification'); plot(freqs, Gamma_ndL_ex, 'DisplayName', 'Sensor Example'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [m/sqrt(Hz)]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/relative_motion_sensor_noise_ASD_example.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:relative_motion_sensor_noise_ASD_example #+caption: Requirement maximum ASD of the sensor noise + example of a sensor validating the requirements #+RESULTS: [[file:figs/relative_motion_sensor_noise_ASD_example.png]] The corresponding RMS value of the sensor noise taken as an example is [nm RMS]: #+begin_src matlab :results replace value 1e9*sqrt(trapz(freqs, Gamma_ndL_max.^2)) #+end_src #+RESULTS: : 519.29 ** Verification of the induced motion error Verify that by taking the sensor noise, we have to wanted displacement error From the sensor noise PSD $\Gamma_n(\omega)$, we can estimate the obtained displacement PSD $\Gamma_x(\omega)$: \[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \cdot \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \] #+begin_src matlab Gamma_xest = zeros(5, length(freqs)); for in = 1:5 Gamma_xest(in, :) = sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2.*Gamma_ndL_max.^2)); end #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([1e9*sqrt(trapz(freqs, (Gamma_xest.^2)')); 1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2))]', {'Dx [nm]', 'Dy [nm]', 'Dz [nm]', 'Rx [nrad]', 'Ry [nrad]'}, {'Results', 'Specifications'}, ' %.1f '); #+end_src #+RESULTS: | | Results | Specifications | |-----------+---------+----------------| | Dx [nm] | 8.9 | 12.1 | | Dy [nm] | 9.3 | 12.1 | | Dz [nm] | 10.2 | 12.1 | | Rx [nrad] | 110.2 | 241.8 | | Ry [nrad] | 107.8 | 241.8 |