<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-04-17 ven. 09:36 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Control Requirements</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script>MathJax = { tex: { tags: 'ams', macros: {bm: ["\\boldsymbol{#1}",1],} } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Control Requirements</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org0341df1">1. Simplify Model for the Nano-Hexapod</a> <ul> <li><a href="#org136c9af">1.1. Model of the nano-hexapod</a></li> <li><a href="#org2fbecfd">1.2. How to include Ground Motion in the model?</a></li> <li><a href="#org8c1e462">1.3. Motion of the micro-station</a></li> </ul> </li> <li><a href="#org92b1239">2. Control with the Stiff Nano-Hexapod</a> <ul> <li><a href="#org19b83b7">2.1. Definition of the values</a></li> <li><a href="#org0e9811a">2.2. Control using \(d\)</a> <ul> <li><a href="#org47fb453">2.2.1. Control Architecture</a></li> <li><a href="#org5a120e1">2.2.2. Analytical Analysis</a></li> </ul> </li> <li><a href="#orga741e48">2.3. Control using \(F_m\)</a> <ul> <li><a href="#org691c845">2.3.1. Control Architecture</a></li> <li><a href="#orgdd5134e">2.3.2. Pure Integrator</a></li> <li><a href="#org5011ab0">2.3.3. Low pass filter</a></li> </ul> </li> <li><a href="#org4fce174">2.4. Comparison</a></li> <li><a href="#org5e0585d">2.5. Control using \(x\)</a> <ul> <li><a href="#orgfab8395">2.5.1. Analytical analysis</a></li> <li><a href="#org625e3c2">2.5.2. Control implementation</a></li> <li><a href="#org38d941f">2.5.3. Results</a></li> </ul> </li> </ul> </li> <li><a href="#org7c4b4fc">3. Comparison with the use of a Soft nano-hexapod</a></li> <li><a href="#orgc0253c3">4. Estimate the level of vibration</a></li> <li><a href="#org764c4a9">5. Requirements on the norm of closed-loop transfer functions</a> <ul> <li><a href="#org27379f3">5.1. Approximation of the ASD of perturbations</a></li> <li><a href="#orgff3d823">5.2. Wanted ASD of outputs</a></li> <li><a href="#org8c6b37c">5.3. Limiting the bandwidth</a></li> <li><a href="#org50054f2">5.4. Generalized Weighted plant</a></li> <li><a href="#org949ab66">5.5. Synthesis</a></li> <li><a href="#orgfe970e4">5.6. Loop Gain</a></li> <li><a href="#org387a405">5.7. Results</a></li> <li><a href="#orgb18d7df">5.8. Requirements</a></li> </ul> </li> </ul> </div> </div> <p> The goal here is to write clear specifications for the NASS. </p> <p> This can then be used for the control synthesis and for the design of the nano-hexapod. </p> <p> Ideal, specifications on the norm of closed loop transfer function should be written. </p> <div id="outline-container-org0341df1" class="outline-2"> <h2 id="org0341df1"><span class="section-number-2">1</span> Simplify Model for the Nano-Hexapod</h2> <div class="outline-text-2" id="text-1"> </div> <div id="outline-container-org136c9af" class="outline-3"> <h3 id="org136c9af"><span class="section-number-3">1.1</span> Model of the nano-hexapod</h3> <div class="outline-text-3" id="text-1-1"> <p> Let’s consider the simple mechanical system in Figure <a href="#orgfa3391a">1</a>. </p> <div id="orgfa3391a" class="figure"> <p><img src="figs/nass_simple_model.png" alt="nass_simple_model.png" /> </p> <p><span class="figure-number">Figure 1: </span>Simplified mechanical system for the nano-hexapod</p> </div> <p> The signals are described in table <a href="#orgd89e830">1</a>. </p> <table id="orgd89e830" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 1:</span> Signals definition for the generalized plant</caption> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left"><b>Symbol</b></th> <th scope="col" class="org-left"><b>Meaning</b></th> </tr> </thead> <tbody> <tr> <td class="org-left"><b>Exogenous Inputs</b></td> <td class="org-left">\(x_\mu\)</td> <td class="org-left">Motion of the $ν$-hexapod’s base</td> </tr> <tr> <td class="org-left"> </td> <td class="org-left">\(F_d\)</td> <td class="org-left">External Forces applied to the Payload</td> </tr> <tr> <td class="org-left"> </td> <td class="org-left">\(r\)</td> <td class="org-left">Reference signal for tracking</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Exogenous Outputs</b></td> <td class="org-left">\(x\)</td> <td class="org-left">Absolute Motion of the Payload</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Sensed Outputs</b></td> <td class="org-left">\(F_m\)</td> <td class="org-left">Force Sensors in each leg</td> </tr> <tr> <td class="org-left"> </td> <td class="org-left">\(d\)</td> <td class="org-left">Measured displacement of each leg</td> </tr> <tr> <td class="org-left"> </td> <td class="org-left">\(x\)</td> <td class="org-left">Absolute Motion of the Payload</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Control Signals</b></td> <td class="org-left">\(F\)</td> <td class="org-left">Actuator Inputs</td> </tr> </tbody> </table> <p> For the nano-hexapod alone, we have the following equations: \[ \begin{align*} x &= \frac{1}{ms^2 + k} F + \frac{1}{ms^2 + k} F_d + \frac{k}{ms^2 + k} x_\mu \\ F_m &= \frac{ms^2}{ms^2 + k} F - \frac{k}{ms^2 + k} F_d + \frac{k m s^2}{ms^2 + k} x_\mu \\ d &= \frac{1}{ms^2 + k} F + \frac{1}{ms^2 + k} F_d - \frac{ms^2}{ms^2 + k} x_\mu \end{align*} \] </p> <p> We can write the equations function of \(\omega_\nu = \sqrt{\frac{k}{m}}\): \[ \begin{align*} x &= \frac{1/k}{1 + \frac{s^2}{\omega_\nu^2}} F + \frac{1/k}{1 + \frac{s^2}{\omega_\nu^2}} F_d + \frac{1}{1 + \frac{s^2}{\omega_\nu^2}} x_\mu \\ F_m &= \frac{\frac{s^2}{\omega_\nu^2}}{1 + \frac{s^2}{\omega_\nu^2}} F - \frac{1}{1 + \frac{s^2}{\omega_\nu^2}} F_d + \frac{k \frac{s^2}{\omega_\nu^2}}{1 + \frac{s^2}{\omega_\nu^2}} x_\mu \\ d &= \frac{1/k}{1 + \frac{s^2}{\omega_\nu^2}} F + \frac{1/k}{1 + \frac{s^2}{\omega_\nu^2}} F_d - \frac{\frac{s^2}{\omega_\nu^2}}{1 + \frac{s^2}{\omega_\nu^2}} x_\mu \end{align*} \] </p> <p> <b>Assumptions</b>: </p> <ul class="org-ul"> <li>the forces applied by the nano-hexapod have no influence on the micro-station, specifically on the displacement of the top platform of the micro-hexapod.</li> </ul> <p> This means that the nano-hexapod can be considered separately from the micro-station and that the motion \(x_\mu\) is imposed and considered as an external input. </p> <p> The nano-hexapod can thus be represented as in Figure <a href="#orgb2d1168">2</a>. </p> <div id="orgb2d1168" class="figure"> <p><img src="figs/nano_station_inputs_outputs.png" alt="nano_station_inputs_outputs.png" /> </p> <p><span class="figure-number">Figure 2: </span>Block representation of the nano-hexapod</p> </div> </div> </div> <div id="outline-container-org2fbecfd" class="outline-3"> <h3 id="org2fbecfd"><span class="section-number-3">1.2</span> How to include Ground Motion in the model?</h3> <div class="outline-text-3" id="text-1-2"> <p> What we measure is not the absolute motion \(x\), but the relative motion \(x - w\) where \(w\) is the motion of the granite. </p> <p> Also, \(w\) induces some motion \(x_\mu\) through the transmissibility of the micro-station. </p> </div> </div> <div id="outline-container-org8c1e462" class="outline-3"> <h3 id="org8c1e462"><span class="section-number-3">1.3</span> Motion of the micro-station</h3> <div class="outline-text-3" id="text-1-3"> <p> As explained, we consider \(x_\mu\) as an external input (\(F\) has no influence on \(x_\mu\)). </p> <p> \(x_\mu\) is the motion of the micro-station’s top platform due to the motion of each stage of the micro-station. </p> <p> We consider that \(x_\mu\) has the following form: \[ x_\mu = T_\mu r + d_\mu \] where: </p> <ul class="org-ul"> <li>\(T_\mu r\) corresponds to the response of the stages due to the reference \(r\)</li> <li>\(d_\mu\) is the motion of the hexapod due to all the vibrations of the stages</li> </ul> <p> \(T_\mu\) can be considered to be a low pass filter with a bandwidth corresponding approximatively to the bandwidth of the micro-station’s stages. To simplify, we can consider \(T_\mu\) to be a first order low pass filter: \[ T_\mu = \frac{1}{1 + s/\omega_\mu} \] where \(\omega_\mu\) corresponds to the tracking speed of the micro-station. </p> <p> What is important to note is that while \(x_\mu\) is viewed as a perturbation from the nano-hexapod point of view, \(x_\mu\) <b>does</b> depend on the reference signal \(r\). </p> <p> Also, here, we suppose that the granite is not moving. </p> <p> If we now include the motion of the granite \(w\), we obtain the block diagram shown in Figure <a href="#org974c98f">3</a>. </p> <div id="org974c98f" class="figure"> <p><img src="figs/nano_station_ground_motion.png" alt="nano_station_ground_motion.png" /> </p> <p><span class="figure-number">Figure 3: </span>Ground Motion \(w\) included</p> </div> <p> \(T_w\) is the mechanical transmissibility of the micro-station. We can approximate this transfer function by a second order low pass filter: \[ T_w = \frac{1}{1 + 2 \xi s/\omega_0 + s^2/\omega_0^2} \] </p> </div> </div> </div> <div id="outline-container-org92b1239" class="outline-2"> <h2 id="org92b1239"><span class="section-number-2">2</span> Control with the Stiff Nano-Hexapod</h2> <div class="outline-text-2" id="text-2"> </div> <div id="outline-container-org19b83b7" class="outline-3"> <h3 id="org19b83b7"><span class="section-number-3">2.1</span> Definition of the values</h3> <div class="outline-text-3" id="text-2-1"> <p> Let’s define the mass and stiffness of the nano-hexapod. </p> <div class="org-src-container"> <pre class="src src-matlab">m = 50; <span class="org-comment">% [kg]</span> k = 1e7; <span class="org-comment">% [N/m]</span> </pre> </div> <p> Let’s define the Plant as shown in Figure <a href="#orgb2d1168">2</a>: </p> <div class="org-src-container"> <pre class="src src-matlab">Gn = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> k)<span class="org-type">*</span>[<span class="org-type">-</span>k, k<span class="org-type">*</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2, m<span class="org-type">*</span>s<span class="org-type">^</span>2; 1, <span class="org-type">-</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2, 1; 1, k, 1]; Gn.InputName = {<span class="org-string">'Fd'</span>, <span class="org-string">'xmu'</span>, <span class="org-string">'F'</span>}; Gn.OutputName = {<span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'x'</span>}; </pre> </div> <p> Now, define the transmissibility transfer function \(T_\mu\) corresponding to the micro-station motion. </p> <div class="org-src-container"> <pre class="src src-matlab">wmu = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% [rad/s]</span> Tmu = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wmu); Tmu.InputName = {<span class="org-string">'r1'</span>}; Tmu.OutputName = {<span class="org-string">'ymu'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>40; xi = 0.5; Tw = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> 2<span class="org-type">*</span>xi<span class="org-type">*</span>s<span class="org-type">/</span>w0 <span class="org-type">+</span> s<span class="org-type">^</span>2<span class="org-type">/</span>w0<span class="org-type">^</span>2); Tw.InputName = {<span class="org-string">'w1'</span>}; Tw.OutputName = {<span class="org-string">'dw'</span>}; </pre> </div> <p> We add the fact that \(x_\mu = d_\mu + T_\mu r + T_w w\): </p> <div class="org-src-container"> <pre class="src src-matlab">Wsplit = [tf(1); tf(1)]; Wsplit.InputName = {<span class="org-string">'w'</span>}; Wsplit.OutputName = {<span class="org-string">'w1'</span>, <span class="org-string">'w2'</span>}; S = sumblk(<span class="org-string">'xmu = ymu + dmu + dw'</span>); Sw = sumblk(<span class="org-string">'y = x - w2'</span>); Gpz = connect(Gn, S, Wsplit, Tw, Tmu, Sw, {<span class="org-string">'Fd'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'r1'</span>, <span class="org-string">'F'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'y'</span>}); </pre> </div> </div> </div> <div id="outline-container-org0e9811a" class="outline-3"> <h3 id="org0e9811a"><span class="section-number-3">2.2</span> Control using \(d\)</h3> <div class="outline-text-3" id="text-2-2"> </div> <div id="outline-container-org47fb453" class="outline-4"> <h4 id="org47fb453"><span class="section-number-4">2.2.1</span> Control Architecture</h4> <div class="outline-text-4" id="text-2-2-1"> <p> Let’s consider a feedback loop using \(d\) as shown in Figure <a href="#orgb50386a">4</a>. </p> <div id="orgb50386a" class="figure"> <p><img src="figs/nano_station_control_d.png" alt="nano_station_control_d.png" /> </p> <p><span class="figure-number">Figure 4: </span>Feedback diagram using \(d\)</p> </div> </div> </div> <div id="outline-container-org5a120e1" class="outline-4"> <h4 id="org5a120e1"><span class="section-number-4">2.2.2</span> Analytical Analysis</h4> <div class="outline-text-4" id="text-2-2-2"> <p> Let’s apply a direct velocity feedback by deriving \(d\): \[ F = F^\prime - g s d \] </p> <p> Thus: \[ d = \frac{1}{ms^2 + gs + k} F^\prime + \frac{1}{ms^2 + gs + k} F_d - \frac{ms^2}{ms^2 + gs + k} x_\mu \] </p> <p> \[ F = \frac{ms^2 + k}{ms^2 + gs + k} F^\prime - \frac{gs}{ms^2 + gs + k} F_d + \frac{mgs^3}{ms^2 + gs + k} x_\mu \] </p> <p> and \[ x = \frac{1}{ms^2 + k} (\frac{ms^2 + k}{ms^2 + gs + k} F^\prime - \frac{gs}{ms^2 + gs + k} F_d + \frac{mgs^3}{ms^2 + gs + k} x_\mu) + \frac{1}{ms^2 + k} F_d + \frac{k}{ms^2 + k} x_\mu \] </p> <p> \[ x = \frac{ms^2 + k}{(ms^2 + k) (ms^2 + gs + k)} F^\prime + \frac{ms^2 + k}{(ms^2 + k) (ms^2 + gs + k)} F_d + \frac{mgs^3 + k(ms^2 + gs + k)}{(ms^2 + k) (ms^2 + gs + k)} x_\mu \] </p> <p> And we finally obtain: \[ x = \frac{1}{ms^2 + gs + k} F^\prime + \frac{1}{ms^2 + gs + k} F_d + \frac{gs + k}{ms^2 + gs + k} x_\mu \] </p> <div class="org-src-container"> <pre class="src src-matlab">K_dvf = 2<span class="org-type">*</span>sqrt(k<span class="org-type">*</span>m)<span class="org-type">*</span>s; K_dvf.InputName = {<span class="org-string">'d'</span>}; K_dvf.OutputName = {<span class="org-string">'F'</span>}; Gpz_dvf = feedback(Gpz, K_dvf, <span class="org-string">'name'</span>); </pre> </div> <p> Now let’s consider that \(x_\mu = d_\mu + T_\mu r\) </p> <p> \[ x = \frac{1}{ms^2 + gs + k} F^\prime + \frac{1}{ms^2 + gs + k} F_d + \frac{gs + k}{ms^2 + gs + k} d_\mu + T_\mu \frac{gs + k}{ms^2 + gs + k} r \] </p> <p> And \(\epsilon = r - x\): \[ \epsilon = \frac{1}{ms^2 + gs + k} F^\prime + \frac{1}{ms^2 + gs + k} F_d + \frac{gs + k}{ms^2 + gs + k} d_\mu + \frac{ms^2 + gs + k - T_\mu (gs + k)}{ms^2 + gs + k} r \] </p> <div class="important"> <p> \[ \epsilon = \frac{1}{ms^2 + gs + k} F^\prime + \frac{1}{ms^2 + gs + k} F_d + \frac{gs + k}{ms^2 + gs + k} d_\mu + \frac{ms^2 - S_\mu(gs + k)}{ms^2 + gs + k} r \] </p> </div> </div> </div> </div> <div id="outline-container-orga741e48" class="outline-3"> <h3 id="orga741e48"><span class="section-number-3">2.3</span> Control using \(F_m\)</h3> <div class="outline-text-3" id="text-2-3"> </div> <div id="outline-container-org691c845" class="outline-4"> <h4 id="org691c845"><span class="section-number-4">2.3.1</span> Control Architecture</h4> <div class="outline-text-4" id="text-2-3-1"> <p> Let’s consider a feedback loop using \(Fm\) as shown in Figure <a href="#org5012ef2">5</a>. </p> <div id="org5012ef2" class="figure"> <p><img src="figs/nano_station_control_Fm.png" alt="nano_station_control_Fm.png" /> </p> <p><span class="figure-number">Figure 5: </span>Feedback diagram using \(F_m\)</p> </div> </div> </div> <div id="outline-container-orgdd5134e" class="outline-4"> <h4 id="orgdd5134e"><span class="section-number-4">2.3.2</span> Pure Integrator</h4> <div class="outline-text-4" id="text-2-3-2"> <p> Let’s apply integral force feedback by integration \(F_m\): \[ F = F^\prime - \frac{g}{s} F_m \] </p> <p> And we finally obtain: \[ x = \frac{1}{ms^2 + mgs + k} F^\prime + \frac{1 + \frac{g}{s}}{ms^2 + mgs + k} F_d + \frac{k}{ms^2 + mgs + k} x_\mu \] </p> <div class="org-src-container"> <pre class="src src-matlab">K_iff = 2<span class="org-type">*</span>sqrt(k<span class="org-type">/</span>m)<span class="org-type">/</span>s; K_iff.InputName = {<span class="org-string">'Fm'</span>}; K_iff.OutputName = {<span class="org-string">'F'</span>}; Gpz_iff = feedback(Gpz, K_iff, <span class="org-string">'name'</span>); </pre> </div> <p> Now let’s consider that \(x_\mu = d_\mu + T_\mu r\) </p> <p> \[ x = \frac{1}{ms^2 + mgs + k} F^\prime + \frac{1 + \frac{g}{s}}{ms^2 + mgs + k} F_d + \frac{k}{ms^2 + mgs + k} d_\mu + \frac{T_\mu k}{ms^2 + mgs + k} r \] </p> <p> And \(\epsilon = r - x\): \[ \epsilon = \frac{1}{ms^2 + mgs + k} F^\prime + \frac{1 + \frac{g}{s}}{ms^2 + mgs + k} F_d + \frac{k}{ms^2 + mgs + k} d_\mu + \frac{ms^2 + mgs + k - T_\mu k}{ms^2 + mgs + k} r \] </p> <div class="important"> <p> \[ \epsilon = \frac{1}{ms^2 + mgs + k} F^\prime + \frac{1 + \frac{g}{s}}{ms^2 + mgs + k} F_d + \frac{k}{ms^2 + mgs + k} d_\mu + \frac{ms^2 + mgs + S_\mu k}{ms^2 + mgs + k} r \] </p> </div> </div> </div> <div id="outline-container-org5011ab0" class="outline-4"> <h4 id="org5011ab0"><span class="section-number-4">2.3.3</span> Low pass filter</h4> <div class="outline-text-4" id="text-2-3-3"> <p> Instead of a pure integrator, let’s use a low pass filter with a cut-off frequency above the bandwidth of the micro-station \(\omega_mu\) </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-comment">% K_iff = (2*sqrt(k/m)/(2*wmu))*(1/(1 + s/(2*wmu)));</span> <span class="org-comment">% K_iff.InputName = {'Fm'};</span> <span class="org-comment">% K_iff.OutputName = {'F'};</span> <span class="org-comment">% Gpz_iff = feedback(Gpz, K_iff, 'name');</span> </pre> </div> </div> </div> </div> <div id="outline-container-org4fce174" class="outline-3"> <h3 id="org4fce174"><span class="section-number-3">2.4</span> Comparison</h3> <div class="outline-text-3" id="text-2-4"> <div id="orgc10daac" class="figure"> <p><img src="figs/comp_iff_dvf_simplified.png" alt="comp_iff_dvf_simplified.png" /> </p> <p><span class="figure-number">Figure 6: </span>Obtained transfer functions for DVF and IFF (<a href="./figs/comp_iff_dvf_simplified.png">png</a>, <a href="./figs/comp_iff_dvf_simplified.pdf">pdf</a>)</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left">\(d_\mu\)</th> <th scope="col" class="org-left">\(F_d\)</th> <th scope="col" class="org-left">\(w\)</th> </tr> </thead> <tbody> <tr> <td class="org-left">IFF</td> <td class="org-left">Better filtering of the vibrations</td> <td class="org-left">More sensitive to External forces</td> <td class="org-left"> </td> </tr> <tr> <td class="org-left">DVF</td> <td class="org-left">Opposite</td> <td class="org-left">Opposite</td> <td class="org-left">Little bit better at low frequencies</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org5e0585d" class="outline-3"> <h3 id="org5e0585d"><span class="section-number-3">2.5</span> Control using \(x\)</h3> <div class="outline-text-3" id="text-2-5"> </div> <div id="outline-container-orgfab8395" class="outline-4"> <h4 id="orgfab8395"><span class="section-number-4">2.5.1</span> Analytical analysis</h4> <div class="outline-text-4" id="text-2-5-1"> <p> Let’s first consider that only the output \(x\) is used for feedback (Figure <a href="#orgd366408">7</a>) </p> <div id="orgd366408" class="figure"> <p><img src="figs/nano_station_control_x.png" alt="nano_station_control_x.png" /> </p> <p><span class="figure-number">Figure 7: </span>Feedback diagram using \(x\)</p> </div> <p> We then have: \[ \epsilon &= r - G_{\frac{x}{F}} K \epsilon - G_{\frac{x}{F_d}} F_d - G_{\frac{x}{x_\mu}} d_\mu - G_{\frac{x}{x_\mu}} T_\mu r \] </p> <p> And then: </p> <div class="important"> <p> \[ \epsilon = \frac{-G_{\frac{x}{F_d}}}{1 + G_{\frac{x}{F}}K} F_d + \frac{-G_{\frac{x}{x_\mu}}}{1 + G_{\frac{x}{F}}K} d_\mu + \frac{1 - G_{\frac{x}{x_\mu}} T_\mu}{1 + G_{\frac{x}{F}}K} r \] </p> </div> <p> With \(S = \frac{1}{1 + G_{\frac{x}{F}} K}\), we have: \[ \epsilon = - S G_{\frac{x}{F_d}} F_d - S G_{\frac{x}{x_\mu}} d_\mu + S (1 - G_{\frac{x}{x_\mu}} T_\mu) r \] </p> <p> We have 3 terms that we would like to have small by design: </p> <ul class="org-ul"> <li>\(G_{\frac{x}{F_d}} = \frac{1}{ms^2 + k}\): thus \(k\) and \(m\) should be high to lower the effect of direct forces \(F_d\)</li> <li>\(G_{\frac{x}{x_\mu}} = \frac{k}{ms^2 + k} = \frac{1}{1 + \frac{s^2}{\omega_\nu^2}}\): \(\omega_\nu\) should be small enough such that it filters out the vibrations of the micro-station</li> <li>\(1 - G_{\frac{x}{x_\mu}} T_\mu\)</li> </ul> <p> \[ 1 - G_{\frac{x}{x_\mu}} T_\mu = 1 - \frac{1}{1 + \frac{s^2}{\omega_\nu^2}} T_\mu \] </p> <p> We can approximate \(T_\mu \approx \frac{1}{1 + \frac{s}{\omega_\mu}}\) to have: </p> \begin{align*} 1 - G_{\frac{x}{x_\mu}} T_\mu &= 1 - \frac{1}{1 + \frac{s^2}{\omega_\nu^2}} \frac{1}{1 + \frac{s}{\omega_\mu}} \\ &\approx \frac{\frac{s}{\omega_\mu}}{1 + \frac{s}{\omega_\mu}} = S_\mu \text{ if } \omega_\nu > \omega_\mu \\ &\approx \frac{\frac{s^2}{\omega_\nu^2}}{1 + \frac{s^2}{\omega_\nu^2}} = \text{ if } \omega_\nu < \omega_\mu \end{align*} <p> In our case, we have \(\omega_\nu > \omega_\mu\) and thus we cannot lower this term. </p> <p> Some implications on the design are summarized on table <a href="#orga5207fc">2</a>. </p> <table id="orga5207fc" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <caption class="t-above"><span class="table-number">Table 2:</span> Design recommendation</caption> <colgroup> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left">Exogenous Outputs</th> <th scope="col" class="org-left">Design recommendation</th> </tr> </thead> <tbody> <tr> <td class="org-left">\(F_d\)</td> <td class="org-left">high \(k\), high \(m\)</td> </tr> <tr> <td class="org-left">\(d_\mu\)</td> <td class="org-left">low \(k\), high \(m\)</td> </tr> <tr> <td class="org-left">\(r\)</td> <td class="org-left">no influence if \(\omega_\nu > \omega_\mu\)</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org625e3c2" class="outline-4"> <h4 id="org625e3c2"><span class="section-number-4">2.5.2</span> Control implementation</h4> <div class="outline-text-4" id="text-2-5-2"> <p> Controller for the damped plant using DVF. </p> <div class="org-src-container"> <pre class="src src-matlab">wb = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% control bandwidth [rad/s]</span> <span class="org-comment">% Lead</span> h = 2.0; wz = wb<span class="org-type">/</span>h; <span class="org-comment">% [rad/s]</span> wp = wb<span class="org-type">*</span>h; <span class="org-comment">% [rad/s]</span> H = 1<span class="org-type">/</span>h<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wz)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wp); <span class="org-comment">% Integrator until 10Hz</span> Hi = (1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10)<span class="org-type">/</span>(s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10); K = Hi<span class="org-type">*</span>H<span class="org-type">*</span>(1<span class="org-type">/</span>s); Kpz_dvf = K<span class="org-type">/</span>abs(freqresp(K<span class="org-type">*</span>Gpz_dvf(<span class="org-string">'y'</span>, <span class="org-string">'F'</span>), wb)); Kpz_dvf.InputName = {<span class="org-string">'e'</span>}; Kpz_dvf.OutputName = {<span class="org-string">'Fi'</span>}; </pre> </div> <p> Controller for the damped plant using IFF. </p> <div class="org-src-container"> <pre class="src src-matlab">wb = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% control bandwidth [rad/s]</span> <span class="org-comment">% Lead</span> h = 2.0; wz = wb<span class="org-type">/</span>h; <span class="org-comment">% [rad/s]</span> wp = wb<span class="org-type">*</span>h; <span class="org-comment">% [rad/s]</span> H = 1<span class="org-type">/</span>h<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wz)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wp); <span class="org-comment">% Integrator until 10Hz</span> Hi = (1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10)<span class="org-type">/</span>(s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10); K = Hi<span class="org-type">*</span>H<span class="org-type">*</span>(1<span class="org-type">/</span>s); Kpz_iff = K<span class="org-type">/</span>abs(freqresp(K<span class="org-type">*</span>Gpz_iff(<span class="org-string">'y'</span>, <span class="org-string">'F'</span>), wb)); Kpz_iff.InputName = {<span class="org-string">'e'</span>}; Kpz_iff.OutputName = {<span class="org-string">'Fi'</span>}; </pre> </div> <p> Loop gain </p> <div id="org0d0fb80" class="figure"> <p><img src="figs/simple_loop_gain_pz.png" alt="simple_loop_gain_pz.png" /> </p> <p><span class="figure-number">Figure 8: </span>Loop Gain (<a href="./figs/simple_loop_gain_pz.png">png</a>, <a href="./figs/simple_loop_gain_pz.pdf">pdf</a>)</p> </div> <p> Let’s connect all the systems as shown in Figure <a href="#orgd366408">7</a>. </p> <div class="org-src-container"> <pre class="src src-matlab">Sfb = sumblk(<span class="org-string">'e = r2 - y'</span>); R = [tf(1); tf(1)]; R.InputName = {<span class="org-string">'r'</span>}; R.OutputName = {<span class="org-string">'r1'</span>, <span class="org-string">'r2'</span>}; F = [tf(1); tf(1)]; F.InputName = {<span class="org-string">'Fi'</span>}; F.OutputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fu'</span>}; Gpz_fb_dvf = connect(Gpz_dvf, Kpz_dvf, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); Gpz_fb_iff = connect(Gpz_iff, Kpz_iff, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); </pre> </div> </div> </div> <div id="outline-container-org38d941f" class="outline-4"> <h4 id="org38d941f"><span class="section-number-4">2.5.3</span> Results</h4> <div class="outline-text-4" id="text-2-5-3"> <div id="org2b4e783" class="figure"> <p><img src="figs/simple_hac_lac_results.png" alt="simple_hac_lac_results.png" /> </p> <p><span class="figure-number">Figure 9: </span>Obtained closed-loop transfer functions (<a href="./figs/simple_hac_lac_results.png">png</a>, <a href="./figs/simple_hac_lac_results.pdf">pdf</a>)</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left">Reference Tracking</th> <th scope="col" class="org-left">Vibration Filtering</th> <th scope="col" class="org-left">Compliance</th> </tr> </thead> <tbody> <tr> <td class="org-left">DVF</td> <td class="org-left">Similar behavior</td> <td class="org-left"> </td> <td class="org-left">Better for \(\omega < \omega_\nu\)</td> </tr> <tr> <td class="org-left">IFF</td> <td class="org-left">Similar behavior</td> <td class="org-left">Better for \(\omega > \omega_\nu\)</td> <td class="org-left"> </td> </tr> </tbody> </table> </div> </div> </div> </div> <div id="outline-container-org7c4b4fc" class="outline-2"> <h2 id="org7c4b4fc"><span class="section-number-2">3</span> Comparison with the use of a Soft nano-hexapod</h2> <div class="outline-text-2" id="text-3"> <div class="org-src-container"> <pre class="src src-matlab">m = 50; <span class="org-comment">% [kg]</span> k = 1e3; <span class="org-comment">% [N/m]</span> Gn = 1<span class="org-type">/</span>(m<span class="org-type">*</span>s<span class="org-type">^</span>2 <span class="org-type">+</span> k)<span class="org-type">*</span>[<span class="org-type">-</span>k, k<span class="org-type">*</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2, m<span class="org-type">*</span>s<span class="org-type">^</span>2; 1, <span class="org-type">-</span>m<span class="org-type">*</span>s<span class="org-type">^</span>2, 1; 1, k, 1]; Gn.InputName = {<span class="org-string">'Fd'</span>, <span class="org-string">'xmu'</span>, <span class="org-string">'F'</span>}; Gn.OutputName = {<span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'x'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">wmu = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>50; <span class="org-comment">% [rad/s]</span> Tmu = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wmu); Tmu.InputName = {<span class="org-string">'r1'</span>}; Tmu.OutputName = {<span class="org-string">'ymu'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>40; xi = 0.5; Tw = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> 2<span class="org-type">*</span>xi<span class="org-type">*</span>s<span class="org-type">/</span>w0 <span class="org-type">+</span> s<span class="org-type">^</span>2<span class="org-type">/</span>w0<span class="org-type">^</span>2); Tw.InputName = {<span class="org-string">'w1'</span>}; Tw.OutputName = {<span class="org-string">'dw'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Wsplit = [tf(1); tf(1)]; Wsplit.InputName = {<span class="org-string">'w'</span>}; Wsplit.OutputName = {<span class="org-string">'w1'</span>, <span class="org-string">'w2'</span>}; S = sumblk(<span class="org-string">'xmu = ymu + dmu + dw'</span>); Sw = sumblk(<span class="org-string">'y = x - w2'</span>); Gvc = connect(Gn, S, Wsplit, Tw, Tmu, Sw, {<span class="org-string">'Fd'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'r1'</span>, <span class="org-string">'F'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'y'</span>}); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Kvc_dvf = 2<span class="org-type">*</span>sqrt(k<span class="org-type">*</span>m)<span class="org-type">*</span>s; Kvc_dvf.InputName = {<span class="org-string">'d'</span>}; Kvc_dvf.OutputName = {<span class="org-string">'F'</span>}; Gvc_dvf = feedback(Gvc, Kvc_dvf, <span class="org-string">'name'</span>); Kvc_iff = 2<span class="org-type">*</span>sqrt(k<span class="org-type">/</span>m)<span class="org-type">/</span>s; Kvc_iff.InputName = {<span class="org-string">'Fm'</span>}; Kvc_iff.OutputName = {<span class="org-string">'F'</span>}; Gvc_iff = feedback(Gvc, Kvc_iff, <span class="org-string">'name'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">wb = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100; <span class="org-comment">% control bandwidth [rad/s]</span> <span class="org-comment">% Lead</span> h = 2.0; wz = wb<span class="org-type">/</span>h; <span class="org-comment">% [rad/s]</span> wp = wb<span class="org-type">*</span>h; <span class="org-comment">% [rad/s]</span> H = 1<span class="org-type">/</span>h<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wz)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wp); Kvc_dvf = H<span class="org-type">/</span>abs(freqresp(H<span class="org-type">*</span>Gvc_dvf(<span class="org-string">'y'</span>, <span class="org-string">'F'</span>), wb)); Kvc_dvf.InputName = {<span class="org-string">'e'</span>}; Kvc_dvf.OutputName = {<span class="org-string">'Fi'</span>}; Kvc_iff = H<span class="org-type">/</span>abs(freqresp(H<span class="org-type">*</span>Gvc_iff(<span class="org-string">'y'</span>, <span class="org-string">'F'</span>), wb)); Kvc_iff.InputName = {<span class="org-string">'e'</span>}; Kvc_iff.OutputName = {<span class="org-string">'Fi'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Sfb = sumblk(<span class="org-string">'e = r2 - y'</span>); R = [tf(1); tf(1)]; R.InputName = {<span class="org-string">'r'</span>}; R.OutputName = {<span class="org-string">'r1'</span>, <span class="org-string">'r2'</span>}; F = [tf(1); tf(1)]; F.InputName = {<span class="org-string">'Fi'</span>}; F.OutputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fu'</span>}; Gvc_fb_dvf = connect(Gvc_dvf, Kvc_dvf, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); Gvc_fb_iff = connect(Gvc_iff, Kvc_iff, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); </pre> </div> <div id="org3817d8a" class="figure"> <p><img src="figs/simple_hac_lac_results_soft.png" alt="simple_hac_lac_results_soft.png" /> </p> <p><span class="figure-number">Figure 10: </span>Obtained closed-loop transfer functions (<a href="./figs/simple_hac_lac_results_soft.png">png</a>, <a href="./figs/simple_hac_lac_results_soft.pdf">pdf</a>)</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left">Reference Tracking</th> <th scope="col" class="org-left">Vibration Filtering</th> <th scope="col" class="org-left">Compliance</th> </tr> </thead> <tbody> <tr> <td class="org-left">DVF</td> <td class="org-left">Similar behavior</td> <td class="org-left"> </td> <td class="org-left">Better for \(\omega < \omega_\nu\)</td> </tr> <tr> <td class="org-left">IFF</td> <td class="org-left">Similar behavior</td> <td class="org-left">Better for \(\omega > \omega_\nu\)</td> <td class="org-left"> </td> </tr> </tbody> </table> <div id="org55e0fe2" class="figure"> <p><img src="figs/simple_comp_vc_pz.png" alt="simple_comp_vc_pz.png" /> </p> <p><span class="figure-number">Figure 11: </span>Comparison of the closed-loop transfer functions for Soft and Stiff nano-hexapod (<a href="./figs/simple_comp_vc_pz.png">png</a>, <a href="./figs/simple_comp_vc_pz.pdf">pdf</a>)</p> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-center" /> <col class="org-center" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-center"><b>Soft</b></th> <th scope="col" class="org-center"><b>Stiff</b></th> </tr> </thead> <tbody> <tr> <td class="org-left"><b>Reference Tracking</b></td> <td class="org-center">=</td> <td class="org-center">=</td> </tr> <tr> <td class="org-left"><b>Ground Motion</b></td> <td class="org-center">=</td> <td class="org-center">=</td> </tr> <tr> <td class="org-left"><b>Vibration Isolation</b></td> <td class="org-center">+</td> <td class="org-center">-</td> </tr> <tr> <td class="org-left"><b>Compliance</b></td> <td class="org-center">-</td> <td class="org-center">+</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-orgc0253c3" class="outline-2"> <h2 id="orgc0253c3"><span class="section-number-2">4</span> Estimate the level of vibration</h2> <div class="outline-text-2" id="text-4"> <div class="org-src-container"> <pre class="src src-matlab">gm = load(<span class="org-string">'./mat/psd_gm.mat'</span>, <span class="org-string">'f'</span>, <span class="org-string">'psd_gm'</span>); rz = load(<span class="org-string">'./mat/pxsp_r.mat'</span>, <span class="org-string">'f'</span>, <span class="org-string">'pxsp_r'</span>); tyz = load(<span class="org-string">'./mat/pxz_ty_r.mat'</span>, <span class="org-string">'f'</span>, <span class="org-string">'pxz_ty_r'</span>); </pre> </div> <p> If we note the PSD \(\Gamma\): \[ \Gamma_y = |G_{\frac{y}{w}}|^2 \Gamma_w + |G_{\frac{y}{x_\mu}}|^2 \Gamma_{x_\mu} \] </p> <div class="org-src-container"> <pre class="src src-matlab">x_pz = abs(squeeze(freqresp(Gpz_fb_iff(<span class="org-string">'y'</span>, <span class="org-string">'dmu'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_rz <span class="org-type">+</span> psd_ty) <span class="org-type">+</span> abs(squeeze(freqresp(Gpz_fb_iff(<span class="org-string">'y'</span>, <span class="org-string">'w'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_gm); x_vc = abs(squeeze(freqresp(Gvc_fb_iff(<span class="org-string">'y'</span>, <span class="org-string">'dmu'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_rz <span class="org-type">+</span> psd_ty) <span class="org-type">+</span> abs(squeeze(freqresp(Gvc_fb_iff(<span class="org-string">'y'</span>, <span class="org-string">'w'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_gm); </pre> </div> <div id="org858053c" class="figure"> <p><img src="figs/simple_asd_motion_error.png" alt="simple_asd_motion_error.png" /> </p> <p><span class="figure-number">Figure 12: </span>ASD of the position error due to Ground Motion and Vibration (<a href="./figs/simple_asd_motion_error.png">png</a>, <a href="./figs/simple_asd_motion_error.pdf">pdf</a>)</p> </div> <p> Actuator usage </p> <div class="org-src-container"> <pre class="src src-matlab">F_pz = abs(squeeze(freqresp(Gpz_fb_iff(<span class="org-string">'Fu'</span>, <span class="org-string">'dmu'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_rz <span class="org-type">+</span> psd_ty) <span class="org-type">+</span> abs(squeeze(freqresp(Gpz_fb_iff(<span class="org-string">'Fu'</span>, <span class="org-string">'w'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_gm); F_vc = abs(squeeze(freqresp(Gvc_fb_iff(<span class="org-string">'Fu'</span>, <span class="org-string">'dmu'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_rz <span class="org-type">+</span> psd_ty) <span class="org-type">+</span> abs(squeeze(freqresp(Gvc_fb_iff(<span class="org-string">'Fu'</span>, <span class="org-string">'w'</span>), f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>(psd_gm); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">sqrt(trapz(f, F_pz)) sqrt(trapz(f, F_vc)) </pre> </div> <pre class="example"> sqrt(trapz(f, F_pz)) ans = 84.8961762069446 sqrt(trapz(f, F_vc)) ans = 0.0387785981815527 </pre> </div> </div> <div id="outline-container-org764c4a9" class="outline-2"> <h2 id="org764c4a9"><span class="section-number-2">5</span> Requirements on the norm of closed-loop transfer functions</h2> <div class="outline-text-2" id="text-5"> </div> <div id="outline-container-org27379f3" class="outline-3"> <h3 id="org27379f3"><span class="section-number-3">5.1</span> Approximation of the ASD of perturbations</h3> <div class="outline-text-3" id="text-5-1"> <div class="org-src-container"> <pre class="src src-matlab">G_rz = 1e<span class="org-type">-</span>9<span class="org-type">*</span>1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>0.5)<span class="org-type">^</span>2<span class="org-type">*</span>(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">*</span>(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10)<span class="org-type">*</span>(1<span class="org-type">/</span>((1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>100)<span class="org-type">^</span>2)); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">G_gm = 1e<span class="org-type">-</span>8<span class="org-type">*</span>1<span class="org-type">/</span>s<span class="org-type">^</span>2<span class="org-type">*</span>(s <span class="org-type">+</span> 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>1)<span class="org-type">^</span>2<span class="org-type">*</span>(1<span class="org-type">/</span>((1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10)<span class="org-type">^</span>3)); </pre> </div> </div> </div> <div id="outline-container-orgff3d823" class="outline-3"> <h3 id="orgff3d823"><span class="section-number-3">5.2</span> Wanted ASD of outputs</h3> <div class="outline-text-3" id="text-5-2"> <p> Wanted ASD of motion error </p> <div class="org-src-container"> <pre class="src src-matlab">y_wanted = 100e<span class="org-type">-</span>9; <span class="org-comment">% 10nm rms wanted</span> y_bw = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>100; <span class="org-comment">% bandwidth [rad/s]</span> G_y = 2<span class="org-type">*</span>y_wanted<span class="org-type">/</span>sqrt(y_bw) <span class="org-type">*</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>y_bw<span class="org-type">/</span>10) <span class="org-type">/</span> (1 <span class="org-type">+</span> s<span class="org-type">/</span>y_bw); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">sqrt(trapz(f, abs(squeeze(freqresp(G_y, f, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)) </pre> </div> <pre class="example"> sqrt(trapz(f, abs(squeeze(freqresp(G_y, f, 'Hz'))).^2)) ans = 9.47118350214793e-08 </pre> </div> </div> <div id="outline-container-org8c6b37c" class="outline-3"> <h3 id="org8c6b37c"><span class="section-number-3">5.3</span> Limiting the bandwidth</h3> <div class="outline-text-3" id="text-5-3"> <div class="org-src-container"> <pre class="src src-matlab">wF = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10; G_F = 100000<span class="org-type">*</span>(wF <span class="org-type">+</span> s)<span class="org-type">^</span>2; </pre> </div> </div> </div> <div id="outline-container-org50054f2" class="outline-3"> <h3 id="org50054f2"><span class="section-number-3">5.4</span> Generalized Weighted plant</h3> <div class="outline-text-3" id="text-5-4"> <p> Let’s create a generalized weighted plant for controller synthesis. </p> <p> Let’s start simple: </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-left"><b>Symbol</b></th> <th scope="col" class="org-left"><b>Meaning</b></th> </tr> </thead> <tbody> <tr> <td class="org-left"><b>Exogenous Inputs</b></td> <td class="org-left">\(x_\mu\)</td> <td class="org-left">Motion of the $ν$-hexapod’s base</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Exogenous Outputs</b></td> <td class="org-left">\(y\)</td> <td class="org-left">Motion error of the Payload</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Sensed Outputs</b></td> <td class="org-left">\(y\)</td> <td class="org-left">Motion error of the Payload</td> </tr> </tbody> <tbody> <tr> <td class="org-left"><b>Control Signals</b></td> <td class="org-left">\(F\)</td> <td class="org-left">Actuator Inputs</td> </tr> </tbody> </table> <p> Add \(F\) as output. </p> <div class="org-src-container"> <pre class="src src-matlab">F = [tf(1); tf(1)]; F.InputName = {<span class="org-string">'Fi'</span>}; F.OutputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fu'</span>}; P_pz = connect(F, Gpz_dvf, {<span class="org-string">'dmu'</span>, <span class="org-string">'Fi'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'Fu'</span>, <span class="org-string">'y'</span>}) P_vc = connect(F, Gvc_dvf, {<span class="org-string">'dmu'</span>, <span class="org-string">'Fi'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'Fu'</span>, <span class="org-string">'y'</span>}) </pre> </div> <p> Normalization. </p> <p> We multiply the plant input by \(G_{rz}\) and the plant output by \(G_y^{-1}\): </p> <div class="org-src-container"> <pre class="src src-matlab">P_pz_norm = blkdiag(inv(G_y), inv(G_F), 1)<span class="org-type">*</span>P_pz<span class="org-type">*</span>blkdiag(G_rz, 1); P_pz_norm.OutputName = {<span class="org-string">'z'</span>, <span class="org-string">'F'</span>, <span class="org-string">'y'</span>}; P_pz_norm.InputName = {<span class="org-string">'w'</span>, <span class="org-string">'u'</span>}; P_vc_norm = blkdiag(inv(G_y), inv(G_F), 1)<span class="org-type">*</span>P_vc<span class="org-type">*</span>blkdiag(G_rz, 1); P_vc_norm.OutputName = {<span class="org-string">'z'</span>, <span class="org-string">'F'</span>, <span class="org-string">'y'</span>}; P_vc_norm.InputName = {<span class="org-string">'w'</span>, <span class="org-string">'u'</span>}; </pre> </div> </div> </div> <div id="outline-container-org949ab66" class="outline-3"> <h3 id="org949ab66"><span class="section-number-3">5.5</span> Synthesis</h3> <div class="outline-text-3" id="text-5-5"> <div class="org-src-container"> <pre class="src src-matlab">[Kpz_dvf,CL_vc,<span class="org-type">~</span>] = hinfsyn(minreal(P_pz_norm), 1, 1, <span class="org-string">'TOLGAM'</span>, 0.001, <span class="org-string">'METHOD'</span>, <span class="org-string">'LMI'</span>, <span class="org-string">'DISPLAY'</span>, <span class="org-string">'on'</span>); Kpz_dvf.InputName = {<span class="org-string">'e'</span>}; Kpz_dvf.OutputName = {<span class="org-string">'Fi'</span>}; [Kvc_dvf,CL_pz,<span class="org-type">~</span>] = hinfsyn(minreal(P_vc_norm), 1, 1, <span class="org-string">'TOLGAM'</span>, 0.001, <span class="org-string">'METHOD'</span>, <span class="org-string">'LMI'</span>, <span class="org-string">'DISPLAY'</span>, <span class="org-string">'on'</span>); Kvc_dvf.InputName = {<span class="org-string">'e'</span>}; Kvc_dvf.OutputName = {<span class="org-string">'Fi'</span>}; </pre> </div> </div> </div> <div id="outline-container-orgfe970e4" class="outline-3"> <h3 id="orgfe970e4"><span class="section-number-3">5.6</span> Loop Gain</h3> <div class="outline-text-3" id="text-5-6"> <div class="org-src-container"> <pre class="src src-matlab">Sfb = sumblk(<span class="org-string">'e = r2 - y'</span>); R = [tf(1); tf(1)]; R.InputName = {<span class="org-string">'r'</span>}; R.OutputName = {<span class="org-string">'r1'</span>, <span class="org-string">'r2'</span>}; F = [tf(1); tf(1)]; F.InputName = {<span class="org-string">'Fi'</span>}; F.OutputName = {<span class="org-string">'F'</span>, <span class="org-string">'Fu'</span>}; Gpz_fb_dvf = connect(Gpz_dvf, <span class="org-type">-</span>Kpz_dvf, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); Gvc_fb_dvf = connect(Gvc_dvf, <span class="org-type">-</span>Kvc_dvf, R, Sfb, F, {<span class="org-string">'r'</span>, <span class="org-string">'dmu'</span>, <span class="org-string">'Fd'</span>, <span class="org-string">'w'</span>}, {<span class="org-string">'y'</span>, <span class="org-string">'e'</span>, <span class="org-string">'Fm'</span>, <span class="org-string">'d'</span>, <span class="org-string">'Fu'</span>}); </pre> </div> </div> </div> <div id="outline-container-org387a405" class="outline-3"> <h3 id="org387a405"><span class="section-number-3">5.7</span> Results</h3> </div> <div id="outline-container-orgb18d7df" class="outline-3"> <h3 id="orgb18d7df"><span class="section-number-3">5.8</span> Requirements</h3> <div class="outline-text-3" id="text-5-8"> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> <col class="org-left" /> </colgroup> <tbody> <tr> <td class="org-left">reference tracking</td> <td class="org-left">\(\epsilon/r\)</td> <td class="org-left">-120dB at 1Hz</td> </tr> <tr> <td class="org-left">vibration isolation</td> <td class="org-left">\(x/x_\mu\)</td> <td class="org-left">-60dB above 10Hz</td> </tr> <tr> <td class="org-left">compliance</td> <td class="org-left">\(x/F_d\)</td> <td class="org-left"> </td> </tr> </tbody> </table> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-04-17 ven. 09:36</p> </div> </body> </html>