<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-07-31 ven. 17:58 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Noise Budgeting</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script>MathJax = { tex: { tags: 'ams', macros: {bm: ["\\boldsymbol{#1}",1],} } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Noise Budgeting</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgc8b5888">1. Maximum Noise of the Relative Motion Sensors</a> <ul> <li><a href="#org47d58ae">1.1. Initialization</a></li> <li><a href="#org9b3405f">1.2. Control System</a></li> <li><a href="#org4b1b358">1.3. Maximum induced vibration’s ASD</a></li> <li><a href="#org446dbf5">1.4. Computation of the maximum relative motion sensor noise</a></li> <li><a href="#org65a9628">1.5. Verification of the induced motion error</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-orgc8b5888" class="outline-2"> <h2 id="orgc8b5888"><span class="section-number-2">1</span> Maximum Noise of the Relative Motion Sensors</h2> <div class="outline-text-2" id="text-1"> </div> <div id="outline-container-org47d58ae" class="outline-3"> <h3 id="org47d58ae"><span class="section-number-3">1.1</span> Initialization</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab">open('nass_model.slx'); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'hac-dvf'); </pre> </div> <p> We set the stiffness of the payload fixation: </p> <div class="org-src-container"> <pre class="src src-matlab">Kp = 1e8; % [N/m] </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">initializeNanoHexapod('k', 1e5, 'c', 2e2); Ms = 50; initializeSample('mass', Ms, 'freq', sqrt(Kp/Ms)/2/pi*ones(6,1)); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms); </pre> </div> </div> </div> <div id="outline-container-org9b3405f" class="outline-3"> <h3 id="org9b3405f"><span class="section-number-3">1.2</span> Control System</h3> <div class="outline-text-3" id="text-1-2"> <div class="org-src-container"> <pre class="src src-matlab">Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">h = 2.0; Kl = 2e7 * eye(6) * ... 1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ... 1/h*(s/(2*pi*200/h) + 1)/(s/(2*pi*200*h) + 1) * ... (s/2/pi/10 + 1)/(s/2/pi/10) * ... 1/(1 + s/2/pi/300); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">load('mat/stages.mat', 'nano_hexapod'); K = Kl*nano_hexapod.kinematics.J*diag([1, 1, 1, 1, 1, 0]); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">%% Run the linearization G = linearize(mdl, io); G.InputName = {'ndL1', 'ndL2', 'ndL3', 'ndL4', 'ndL5', 'ndL6'}; G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; </pre> </div> </div> </div> <div id="outline-container-org4b1b358" class="outline-3"> <h3 id="org4b1b358"><span class="section-number-3">1.3</span> Maximum induced vibration’s ASD</h3> <div class="outline-text-3" id="text-1-3"> <p> Required maximum induced ASD of the sample’s vibration due to the relative motion sensor noise. \[ \bm{\Gamma}_x(\omega) = \begin{bmatrix} \Gamma_x(\omega) & \Gamma_y(\omega) & \Gamma_{R_x}(\omega) & \Gamma_{R_y}(\omega) \end{bmatrix} \] </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma_x = [(1e-9)/(1 + s/2/pi/100); % Dx (1e-9)/(1 + s/2/pi/100); % Dy (1e-9)/(1 + s/2/pi/100); % Dz (2e-8)/(1 + s/2/pi/100); % Rx (2e-8)/(1 + s/2/pi/100)]; % Ry </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">freqs = logspace(0, 3, 1000); </pre> </div> <p> Corresponding RMS value in [nm rms, nrad rms] </p> <div class="org-src-container"> <pre class="src src-matlab">1e9*sqrt(trapz(freqs, (abs(squeeze(freqresp(Gamma_x, freqs, 'Hz')))').^2)) </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Specifications</th> </tr> </thead> <tbody> <tr> <td class="org-left">Dx [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dy [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dz [nm]</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Rx [nrad]</td> <td class="org-right">241.8</td> </tr> <tr> <td class="org-left">Ry [nrad]</td> <td class="org-right">241.8</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org446dbf5" class="outline-3"> <h3 id="org446dbf5"><span class="section-number-3">1.4</span> Computation of the maximum relative motion sensor noise</h3> <div class="outline-text-3" id="text-1-4"> <p> Let’s note \(G\) the transfer function from the 6 sensor noise \(n\) to the 6dof pose error \(x\). We have: \[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \] In terms of ASD: \[ \Gamma_{x_i}(\omega) = \sum_{j=1}^6 |G_{ij}(j\omega)|^2 \Gamma_{n_j}(\omega), \quad i = 1 \dots 5 \] </p> <p> Let’s suppose that the ASD of all the sensor noise are equal: \[ \Gamma_{n_j} = \Gamma_{n}, \quad j = 1 \dots 6 \] </p> <p> We then have an upper bound of the sensor noise for each of the considered motion errors: \[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{n_i}(\omega)}{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}, \quad i = 1 \dots 5 \] </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma_ndL = zeros(5, length(freqs)); for in = 1:5 Gamma_ndL(in, :) = abs(squeeze(freqresp(Gamma_x(in), freqs, 'Hz')))./sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2))'; end </pre> </div> <div id="orgf2f2139" class="figure"> <p><img src="figs/noise_budget_ndL_max_asd.png" alt="noise_budget_ndL_max_asd.png" /> </p> <p><span class="figure-number">Figure 1: </span>Maximum estimated ASD of the relative motion sensor noise</p> </div> <p> If the noise ASD of the relative motion sensor is bellow the maximum specified ASD for all the considered motion: \[ \Gamma_n < \Gamma_{n_i, \text{max}}, \quad i = 1 \dots 5 \] Then, the motion error due to sensor noise should be bellow the one specified. </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma_ndL_max = min(Gamma_ndL(1:5, :)); </pre> </div> <p> Let’s take a sensor with a white noise up to 1kHz that is bellow the specified one: </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma_ndL_ex = abs(squeeze(freqresp(min(Gamma_ndL_max)/(1 + s/2/pi/1e3), freqs, 'Hz'))); </pre> </div> <div id="org73ad463" class="figure"> <p><img src="figs/relative_motion_sensor_noise_ASD_example.png" alt="relative_motion_sensor_noise_ASD_example.png" /> </p> <p><span class="figure-number">Figure 2: </span>Requirement maximum ASD of the sensor noise + example of a sensor validating the requirements</p> </div> <p> The corresponding RMS value of the sensor noise taken as an example is [nm RMS]: </p> <div class="org-src-container"> <pre class="src src-matlab">1e9*sqrt(trapz(freqs, Gamma_ndL_max.^2)) </pre> </div> <pre class="example"> 519.29 </pre> </div> </div> <div id="outline-container-org65a9628" class="outline-3"> <h3 id="org65a9628"><span class="section-number-3">1.5</span> Verification of the induced motion error</h3> <div class="outline-text-3" id="text-1-5"> <p> Verify that by taking the sensor noise, we have to wanted displacement error From the sensor noise PSD \(\Gamma_n(\omega)\), we can estimate the obtained displacement PSD \(\Gamma_x(\omega)\): \[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \] </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma_xest = zeros(5, length(freqs)); for in = 1:5 Gamma_xest(in, :) = sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2.*Gamma_ndL_max.^2)); end </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-left"> </th> <th scope="col" class="org-right">Results</th> <th scope="col" class="org-right">Specifications</th> </tr> </thead> <tbody> <tr> <td class="org-left">Dx [nm]</td> <td class="org-right">8.9</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dy [nm]</td> <td class="org-right">9.3</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Dz [nm]</td> <td class="org-right">10.2</td> <td class="org-right">12.1</td> </tr> <tr> <td class="org-left">Rx [nrad]</td> <td class="org-right">110.2</td> <td class="org-right">241.8</td> </tr> <tr> <td class="org-left">Ry [nrad]</td> <td class="org-right">107.8</td> <td class="org-right">241.8</td> </tr> </tbody> </table> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-07-31 ven. 17:58</p> </div> </body> </html>