<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2021-02-20 sam. 23:08 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Control of the Nano-Active-Stabilization-System</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> <script> MathJax = { svg: { scale: 1, fontCache: "global" }, tex: { tags: "ams", multlineWidth: "%MULTLINEWIDTH", tagSide: "right", macros: {bm: ["\\boldsymbol{#1}",1],}, tagIndent: ".8em" } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="../../index.html"> HOME </a> </div><div id="content"> <h1 class="title">Control of the Nano-Active-Stabilization-System</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org25c471e">1. Control Configuration - Introduction</a></li> <li><a href="#orgcd0731f">2. Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</a> <ul> <li><a href="#orgbc69eea">2.1. Control in the frame of the Legs</a></li> <li><a href="#org65bc213">2.2. Control in the Cartesian frame</a></li> </ul> </li> <li><a href="#org9ef6b25">3. Active Damping Architecture - Collocated Control (link)</a> <ul> <li><a href="#orge25231e">3.1. Integral Force Feedback</a></li> <li><a href="#org66ad123">3.2. Direct Relative Velocity Feedback</a></li> </ul> </li> <li><a href="#orgf83465a">4. HAC-LAC Architectures (link)</a> <ul> <li><a href="#org3a2dfa2">4.1. HAC-LAC using IFF and Tracking control in the frame of the Legs</a></li> <li><a href="#org27fd54b">4.2. HAC-LAC using IFF and Tracking control in the Cartesian frame</a></li> <li><a href="#org8454531">4.3. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li> <li><a href="#org89a2695">4.4. HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li> <li><a href="#orgac21cc9">4.5. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</a></li> <li><a href="#org6676bde">4.6. HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</a></li> </ul> </li> <li><a href="#orge5dd5fd">5. Cascade Architectures (link)</a> <ul> <li><a href="#org9b331a4">5.1. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</a></li> <li><a href="#org2f8d9f9">5.2. Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</a></li> </ul> </li> <li><a href="#org3a980c5">6. Force Control (link)</a></li> <li><a href="#org73661f1">7. Other Control Architectures</a> <ul> <li><a href="#org26f61ba">7.1. Control to force the nano-hexapod to not do any vertical rotation</a></li> </ul> </li> </ul> </div> </div> <p> The system consist of the following inputs and outputs (Figure <a href="#org37cd4b0">1</a>): </p> <ul class="org-ul"> <li>\(\bm{\tau}\): Forces applied in each leg</li> <li>\(\bm{\tau}_m\): Force sensor located in each leg</li> <li>\(\bm{\mathcal{X}}\): Measurement of the payload position with respect to the granite</li> <li>\(d\bm{\mathcal{L}}\): Measurement of the (small) relative motion of each leg</li> </ul> <div id="org37cd4b0" class="figure"> <p><img src="figs/control_architecture_plant.png" alt="control_architecture_plant.png" /> </p> <p><span class="figure-number">Figure 1: </span>Block diagram with the inputs and outputs of the system</p> </div> <p> In order to position the Sample with respect to the granite, we must use the measurement \(\bm{\mathcal{X}}\) in the control loop. The wanted position of the sample with respect to the granite is represented by \(\bm{r}_\mathcal{X}\). From \(\bm{r}_\mathcal{X}\) and \(\bm{\mathcal{X}}\), we can compute the required small change of pose of the nano-hexapod’s top platform expressed in the frame of the nano-hexapod’s base as shown in Figure <a href="#orgb843e60">2</a>. </p> <p> This can we considered as: </p> <ul class="org-ul"> <li>the position error \(\bm{\epsilon}_{\mathcal{X}_n}\) expressed in a frame attach to the base of the nano-hexapod</li> <li>the wanted (small) pose displacement \(\bm{r}_{d\mathcal{X}_n}\) of the nano-hexapod mobile platform with respect to its base</li> </ul> <div id="orgb843e60" class="figure"> <p><img src="figs/control_architecture_pos_error.png" alt="control_architecture_pos_error.png" /> </p> <p><span class="figure-number">Figure 2: </span>Block diagram corresponding to the computation of the position error in the frame of the nano-hexapod</p> </div> <p> In this document, we see how the different outputs of the system can be used to control of position \(\bm{\mathcal{X}}\). </p> <div id="outline-container-org25c471e" class="outline-2"> <h2 id="org25c471e"><span class="section-number-2">1</span> Control Configuration - Introduction</h2> <div class="outline-text-2" id="text-1"> <p> In this section, we discuss the control configuration for the NASS. </p> <p> From (<a href="#citeproc_bib_item_2">Skogestad and Postlethwaite 2007</a>): </p> <blockquote> <p> We define the <b>control configuration</b> to be the restrictions imposed on the overall controller \(K\) by decomposing it into a set of <b>local controllers</b> with predetermined links and with a possibly predetermined design sequence where subcontrollers are designed locally. </p> <p> Some elements used to build up a specific control configuration are: </p> <ul class="org-ul"> <li><b>Cascade controllers</b>. The output from one controller is the input to another</li> <li><b>Decentralized controllers</b>. The control system consists of independent feedback controllers which interconnect a subset of the output measurements with a subset of the manipulated inputs. These subsets should not be used by any other controller</li> <li><b>Feedforward elements</b>. Link measured disturbances and manipulated inputs</li> <li><b>Decoupling elements</b>. Link one set of manipulated inputs with another set of manipulated inputs. They are used to improve the performance of decentralized control systems.</li> </ul> </blockquote> <p> Decoupling elements will be used to convert quantities from the joint space to the task space and vice-versa. </p> <p> Decentralized controllers will be largely used both for Tracking control (Section <a href="#orga1c5122">2</a>) and for Active Damping techniques (Section <a href="#orgaf5a850">3</a>) </p> <p> Combining both can be done in an HAC-LAC topology presented in Section <a href="#org4b1b4af">4</a>. </p> <p> The use of decentralized controllers is proposed in Section <a href="#org697801a">5</a>. </p> </div> </div> <div id="outline-container-orgcd0731f" class="outline-2"> <h2 id="orgcd0731f"><span class="section-number-2">2</span> Tracking Control in the Frame of the Nano-Hexapod - Basic Architectures</h2> <div class="outline-text-2" id="text-2"> <p> <a id="orga1c5122"></a> </p> <p> In this section, we suppose that we want to track some reference position \(\bm{r}_{\mathcal{X}_n}\) corresponding to the pose of the nano-hexapod’s mobile platform with respect to its fixed base. </p> <p> To do so, we have to the use the leg’s length measurement \(d\bm{\mathcal{L}}\). </p> <p> However, thanks to the forward and inverse kinematics, the controller can either be designed in the task space or in the joint space. </p> <p> These to configuration are described in the next two sections. </p> </div> <div id="outline-container-orgbc69eea" class="outline-3"> <h3 id="orgbc69eea"><span class="section-number-3">2.1</span> Control in the frame of the Legs</h3> <div class="outline-text-3" id="text-2-1"> <p> <a id="org92ab294"></a> </p> <p> From the wanted small change in pose of the nano-hexapod’s mobile platform \(\bm{r}_{d\mathcal{X}_n}\), we can use the Inverse Kinematics of the nano-hexapod to compute the corresponding small change of the leg length of the nano-hexapod \(\bm{r}_{d\mathcal{L}}\). Then, this is subtracted by the measurement of the leg relative displacement \(d\bm{\mathcal{L}}\) to obtain to displacement error of each leg \(\bm{\epsilon}_{d\mathcal{L}}\). Finally, a diagonal (Decentralized) controller \(\bm{K}_\mathcal{L}\) can be used. </p> <div id="org6c88afe" class="figure"> <p><img src="figs/control_architecture_leg_frame.png" alt="control_architecture_leg_frame.png" /> </p> <p><span class="figure-number">Figure 3: </span>Control in the frame of the legs</p> </div> </div> </div> <div id="outline-container-org65bc213" class="outline-3"> <h3 id="org65bc213"><span class="section-number-3">2.2</span> Control in the Cartesian frame</h3> <div class="outline-text-3" id="text-2-2"> <p> <a id="orgd4d12e5"></a> </p> <p> From the relative displacement of each leg \(d\bm{\mathcal{L}}\), the pose of the nano-hexapod’s mobile platform \(\bm{\mathcal{X}_n}\) is estimated. It is then subtracted from reference pose of the nano-hexapod \(\bm{r}_{\mathcal{X}_n}\) to obtain the pose error \(\bm{\epsilon}_{\mathcal{X}_n}\). A diagonal controller \(\bm{K}_\mathcal{X}\) is used to generate forces and torques applied on the payload in a frame attached to the nano-hexapod’s base. These forces are then converted to forces applied in each of the nano-hexapod’s actuators by the use of the Jacobian \(\bm{J}^{-T}\). </p> <div id="orga34a56c" class="figure"> <p><img src="figs/control_architecture_cartesian_frame.png" alt="control_architecture_cartesian_frame.png" /> </p> <p><span class="figure-number">Figure 4: </span>Control in the cartesian Frame (rotating frame attached to the nano-hexapod’s base)</p> </div> </div> </div> </div> <div id="outline-container-org9ef6b25" class="outline-2"> <h2 id="org9ef6b25"><span class="section-number-2">3</span> Active Damping Architecture - Collocated Control (<a href="control_active_damping.html">link</a>)</h2> <div class="outline-text-2" id="text-3"> <p> <a id="orgaf5a850"></a> </p> <p> From (<a href="#citeproc_bib_item_1">Preumont 2018</a>): </p> <blockquote> <p> Active damping is very effective in reducing the settling time of transient disturbances and the effect of steady state disturbances near the resonance frequencies of the system; however, away from the resonances, the active damping is completely ineffective and leaves the closed-loop response essentially unchanged. Such low-gain controllers are often called Low Authority Controllers (LAC), because they modify the poles of the system only slightly. </p> </blockquote> <p> Two very well known active damping techniques are <b>Integral Force Feedback</b> and <b>Direct Velocity Feedback</b>. </p> <p> These two active damping techniques are collocated control techniques. </p> <p> The active damping techniques are studied in <a href="control_active_damping.html">this</a> document. </p> </div> <div id="outline-container-orge25231e" class="outline-3"> <h3 id="orge25231e"><span class="section-number-3">3.1</span> Integral Force Feedback</h3> <div class="outline-text-3" id="text-3-1"> <p> <a id="org71c8197"></a> </p> <p> In this active damping technique, the force sensors in each leg is used. </p> <p> The controller \(\bm{K}_\text{IFF}\) is a diagonal matrix, each of its diagonal element consists of: </p> <ul class="org-ul"> <li>an pure integrator</li> <li>a gain \(g\) that can be tuned to achieve a maximum damping</li> </ul> \begin{equation} \bm{K}_\text{IFF}(s) = \frac{g}{s} \bm{I}_{6} \end{equation} <p> A lead-lag can also be used instead of a pure integrator. </p> <div id="orga842725" class="figure"> <p><img src="figs/control_architecture_iff.png" alt="control_architecture_iff.png" /> </p> <p><span class="figure-number">Figure 5: </span>Integral Force Feedback</p> </div> </div> </div> <div id="outline-container-org66ad123" class="outline-3"> <h3 id="org66ad123"><span class="section-number-3">3.2</span> Direct Relative Velocity Feedback</h3> <div class="outline-text-3" id="text-3-2"> <p> <a id="org4acc137"></a> </p> <p> The controller \(\bm{K}_\text{DVF}\) is a diagonal matrix. Each diagonal element consists of: </p> <ul class="org-ul"> <li>a derivative action up to some frequency \(\omega_0\)</li> <li>a gain \(g\) that can be tuned to achieve a maximum damping</li> </ul> \begin{equation} \bm{K}_\text{DVF}(s) = \frac{g s}{\omega_0 + s} \bm{I}_{6} \end{equation} <div id="org76615cc" class="figure"> <p><img src="figs/control_architecture_dvf.png" alt="control_architecture_dvf.png" /> </p> <p><span class="figure-number">Figure 6: </span>Direct Velocity Feedback</p> </div> </div> </div> </div> <div id="outline-container-orgf83465a" class="outline-2"> <h2 id="orgf83465a"><span class="section-number-2">4</span> HAC-LAC Architectures (<a href="control_hac_lac.html">link</a>)</h2> <div class="outline-text-2" id="text-4"> <p> <a id="org4b1b4af"></a> </p> <p> Here we can combine Active Damping Techniques (Low authority control) with a tracking controller (high authority control). Usually, the low authority controller is designed first, and the high authority controller is designed based on the damped plant. </p> <p> From (<a href="#citeproc_bib_item_1">Preumont 2018</a>): </p> <blockquote> <p> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure <a href="#orgfe203dc">7</a>. The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages: </p> <ul class="org-ul"> <li>The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth</li> <li>The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)</li> <li>The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)</li> </ul> </blockquote> <div id="orgfe203dc" class="figure"> <p><img src="figs/control_architecture_hac_lac.png" alt="control_architecture_hac_lac.png" /> </p> <p><span class="figure-number">Figure 7: </span>HAC-LAC Control Architecture</p> </div> <p> If there is only one input to the system, the HAC-LAC topology can be represented as depicted in Figure <a href="#org8e5c9da">8</a>. Usually, the Low Authority Controller is first design, and then the High Authority Controller is designed based on the damped plant. </p> <div id="org8e5c9da" class="figure"> <p><img src="figs/control_architecture_hac_lac_one_input.png" alt="control_architecture_hac_lac_one_input.png" /> </p> <p><span class="figure-number">Figure 8: </span>HAC-LAC Architecture with a system having only one input</p> </div> </div> <div id="outline-container-org3a2dfa2" class="outline-3"> <h3 id="org3a2dfa2"><span class="section-number-3">4.1</span> HAC-LAC using IFF and Tracking control in the frame of the Legs</h3> <div class="outline-text-3" id="text-4-1"> <div id="org259b2b4" class="figure"> <p><img src="figs/control_architecture_hac_iff_L.png" alt="control_architecture_hac_iff_L.png" /> </p> <p><span class="figure-number">Figure 9: </span>IFF + Control in the frame of the legs</p> </div> </div> </div> <div id="outline-container-org27fd54b" class="outline-3"> <h3 id="org27fd54b"><span class="section-number-3">4.2</span> HAC-LAC using IFF and Tracking control in the Cartesian frame</h3> <div class="outline-text-3" id="text-4-2"> <div id="org0bde593" class="figure"> <p><img src="figs/control_architecture_hac_iff_X.png" alt="control_architecture_hac_iff_X.png" /> </p> <p><span class="figure-number">Figure 10: </span>IFF + Control in the cartesian frame</p> </div> </div> </div> <div id="outline-container-org8454531" class="outline-3"> <h3 id="org8454531"><span class="section-number-3">4.3</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3> <div class="outline-text-3" id="text-4-3"> <div id="orgd88bdcb" class="figure"> <p><img src="figs/control_architecture_hac_iff_pos_X.png" alt="control_architecture_hac_iff_pos_X.png" /> </p> </div> </div> </div> <div id="outline-container-org89a2695" class="outline-3"> <h3 id="org89a2695"><span class="section-number-3">4.4</span> HAC-LAC using IFF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3> <div class="outline-text-3" id="text-4-4"> <div id="orgc4e63e2" class="figure"> <p><img src="figs/control_architecture_hac_iff_pos_L.png" alt="control_architecture_hac_iff_pos_L.png" /> </p> </div> </div> </div> <div id="outline-container-orgac21cc9" class="outline-3"> <h3 id="orgac21cc9"><span class="section-number-3">4.5</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the task space</h3> <div class="outline-text-3" id="text-4-5"> <div id="org4e63dc4" class="figure"> <p><img src="figs/control_architecture_hac_dvf_pos_X.png" alt="control_architecture_hac_dvf_pos_X.png" /> </p> </div> </div> </div> <div id="outline-container-org6676bde" class="outline-3"> <h3 id="org6676bde"><span class="section-number-3">4.6</span> HAC-LAC using DVF - the HAC controller is positioning the sample w.r.t. the granite in the space of the legs</h3> <div class="outline-text-3" id="text-4-6"> <div id="org2cc76e1" class="figure"> <p><img src="figs/control_architecture_hac_dvf_pos_L.png" alt="control_architecture_hac_dvf_pos_L.png" /> </p> </div> </div> </div> </div> <div id="outline-container-orge5dd5fd" class="outline-2"> <h2 id="orge5dd5fd"><span class="section-number-2">5</span> Cascade Architectures (<a href="control_cascade.html">link</a>)</h2> <div class="outline-text-2" id="text-5"> <p> <a id="org697801a"></a> </p> <p> The principle of Cascade control is shown in Figure <a href="#org8e45511">15</a> and explained as follow: </p> <blockquote> <p> To follow <b>two objectives</b> with different properties in one control system, usually a <b>hierarchy</b> of two feedback loops is used in practice. This kind of control topology is called <b>cascade control</b>, which is used when there are <b>several measurements and one prime control variable</b>. Cascade control is implemented by <b>nesting</b> the control loops, as shown in Figure <a href="#org8e45511">15</a>. The output control loop is called the <b>primary loop</b>, while the inner loop is called the secondary loop and is used to fulfill a secondary objective in the closed-loop system. – (<a href="#citeproc_bib_item_3">Taghirad 2013</a>) </p> </blockquote> <div id="org8e45511" class="figure"> <p><img src="figs/control_architecture_cascade_control.png" alt="control_architecture_cascade_control.png" /> </p> <p><span class="figure-number">Figure 15: </span>Cascade Control Architecture</p> </div> <p> This control topology seems adapted for the NASS, as indeed we have more inputs than outputs </p> <p> In the NASS’s case: </p> <ul class="org-ul"> <li>The primary objective is to position the sample with respect to the granite, thus the outer loop (and primary controller) should corresponds to a motion control loop</li> </ul> <p> The inner loop can be composed of the system controlled with the HAC-LAC topology. </p> </div> <div id="outline-container-org9b331a4" class="outline-3"> <h3 id="org9b331a4"><span class="section-number-3">5.1</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the task space</h3> <div class="outline-text-3" id="text-5-1"> <div id="orge54ab8a" class="figure"> <p><img src="figs/control_architecture_cascade_L.png" alt="control_architecture_cascade_L.png" /> </p> <p><span class="figure-number">Figure 16: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs</p> </div> </div> </div> <div id="outline-container-org2f8d9f9" class="outline-3"> <h3 id="org2f8d9f9"><span class="section-number-3">5.2</span> Cascade Control with HAC-LAC Inner Loop and Primary Controller in the joint space</h3> <div class="outline-text-3" id="text-5-2"> <div id="orgdb3211a" class="figure"> <p><img src="figs/control_architecture_cascade_X.png" alt="control_architecture_cascade_X.png" /> </p> <p><span class="figure-number">Figure 17: </span>Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the Cartesian Frame</p> </div> </div> </div> </div> <div id="outline-container-org3a980c5" class="outline-2"> <h2 id="org3a980c5"><span class="section-number-2">6</span> Force Control (<a href="control_force.html">link</a>)</h2> <div class="outline-text-2" id="text-6"> <p> Signals: </p> <ul class="org-ul"> <li>\(\bm{r}_\mathcal{F}\) is the wanted total force/torque to be applied to the payload</li> <li>\(\bm{\epsilon}_\mathcal{F}\) is the force/torque errors that should be applied to the payload</li> <li>\(\bm{\tau}\) is the force applied in each actuator</li> </ul> <div id="org17f57fd" class="figure"> <p><img src="figs/control_architecture_force.png" alt="control_architecture_force.png" /> </p> </div> </div> </div> <div id="outline-container-org73661f1" class="outline-2"> <h2 id="org73661f1"><span class="section-number-2">7</span> Other Control Architectures</h2> <div class="outline-text-2" id="text-7"> </div> <div id="outline-container-org26f61ba" class="outline-3"> <h3 id="org26f61ba"><span class="section-number-3">7.1</span> Control to force the nano-hexapod to not do any vertical rotation</h3> <div class="outline-text-3" id="text-7-1"> <p> As the sample rotation around the vertical axis is not measure, the best we can do with the nano-hexapod is to not rotate around this same axis. </p> <p> One way to do it is shown in Figure <a href="#org6559cc5">19</a>. </p> <p> The controller \(\bm{K}_{R_z}\) is decomposed as shown in Figure <a href="#org1d551e2">20</a>. </p> <div id="org6559cc5" class="figure"> <p><img src="figs/control_architecture_fixed_rz.png" alt="control_architecture_fixed_rz.png" /> </p> <p><span class="figure-number">Figure 19: </span>Figure caption</p> </div> <div id="org1d551e2" class="figure"> <p><img src="figs/control_architecture_fixed_Krz.png" alt="control_architecture_fixed_Krz.png" /> </p> <p><span class="figure-number">Figure 20: </span>Figure caption</p> </div> </div> </div> </div> <p> </p> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2> <div class="csl-bib-body"> <div class="csl-entry"><a name="citeproc_bib_item_1"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-72296-2">https://doi.org/10.1007/978-3-319-72296-2</a>.</div> <div class="csl-entry"><a name="citeproc_bib_item_2"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. <i>Multivariable Feedback Control: Analysis and Design</i>. John Wiley.</div> <div class="csl-entry"><a name="citeproc_bib_item_3"></a>Taghirad, Hamid. 2013. <i>Parallel Robots : Mechanics and Control</i>. Boca Raton, FL: CRC Press.</div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2021-02-20 sam. 23:08</p> </div> </body> </html>