diff --git a/org/disturbances.org b/org/disturbances.org index deb9379..f712b6f 100644 --- a/org/disturbances.org +++ b/org/disturbances.org @@ -734,3 +734,71 @@ Let's now compare the effect of those perturbations on the position error of the #+name: fig:effect_disturbances_position_error #+caption: Effect of Perturbations on the position error ([[./figs/effect_disturbances_position_error.png][png]], [[./figs/effect_disturbances_position_error.pdf][pdf]]) [[file:figs/effect_disturbances_position_error.png]] + + +* TODO Sensibility to disturbances without the nano-hexapod :noexport: +#+begin_src matlab + initializeGround(); + initializeGranite(); + initializeTy(); + initializeRy(); + initializeRz(); + initializeMicroHexapod(); + initializeAxisc(); + initializeMirror(); + initializeNanoHexapod('type', 'rigid'); +#+end_src + +We set the stiffness of the payload fixation: +#+begin_src matlab + Kp = 1e8; % [N/m] +#+end_src + +Open Loop Control. +#+begin_src matlab + initializeController('type', 'open-loop'); +#+end_src + +#+begin_src matlab + initializeSimscapeConfiguration('gravity', false); + initializeDisturbances('enable', false); + initializeLoggingConfiguration('log', 'none'); +#+end_src + +We identify the system for the following payload masses: +#+begin_src matlab + Ms = [1, 10, 50]; +#+end_src + +#+begin_src matlab :exports none + %% Name of the Simulink File + mdl = 'nass_model'; + + %% Micro-Hexapod + clear io; io_i = 1; + io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Z Ground motion + io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_z'); io_i = io_i + 1; % Parasitic force Ty - Z + io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Parasitic force Rz - Z + io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fd'); io_i = io_i + 1; % Direct forces + + io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror +#+end_src + +#+begin_src matlab :exports none + Gd = {zeros(length(Ms), 1)}; + + for i = 1:length(Ms) + initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1)); + + %% Run the linearization + G = linearize(mdl, io); + G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}; + G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'}; + + Gd(i) = {G}; + end +#+end_src + +#+begin_src matlab + save('./mat/Gd_ol.mat', 'Gd', 'Ms'); +#+end_src