diff --git a/docs/figs/opt_stiff_cas_closed_loop.pdf b/docs/figs/opt_stiff_cas_closed_loop.pdf new file mode 100644 index 0000000..58dd5d3 Binary files /dev/null and b/docs/figs/opt_stiff_cas_closed_loop.pdf differ diff --git a/docs/figs/opt_stiff_cas_closed_loop.png b/docs/figs/opt_stiff_cas_closed_loop.png new file mode 100644 index 0000000..d4e88e8 Binary files /dev/null and b/docs/figs/opt_stiff_cas_closed_loop.png differ diff --git a/docs/figs/opt_stiff_req_bandwidth_K1_K2.pdf b/docs/figs/opt_stiff_req_bandwidth_K1_K2.pdf new file mode 100644 index 0000000..5d7cd29 Binary files /dev/null and b/docs/figs/opt_stiff_req_bandwidth_K1_K2.pdf differ diff --git a/docs/figs/opt_stiff_req_bandwidth_K1_K2.png b/docs/figs/opt_stiff_req_bandwidth_K1_K2.png new file mode 100644 index 0000000..ba118ad Binary files /dev/null and b/docs/figs/opt_stiff_req_bandwidth_K1_K2.png differ diff --git a/docs/optimal_stiffness_disturbances.html b/docs/optimal_stiffness_disturbances.html index 4d97449..3b5ce93 100644 --- a/docs/optimal_stiffness_disturbances.html +++ b/docs/optimal_stiffness_disturbances.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Determination of the optimal nano-hexapod’s stiffness for reducing the effect of disturbances @@ -257,7 +257,7 @@
  • 2.3. Sensitivity to Stages vibration (Filtering)
  • 2.4. Effect of Ground motion (Transmissibility).
  • 2.5. Direct Forces (Compliance).
  • -
  • 2.6. Conclusion
  • +
  • 2.6. Conclusion
  • 3. Effect of granite stiffness @@ -270,7 +270,7 @@
  • 3.2. Soft Granite
  • 3.3. Effect of the Granite transfer function
  • -
  • 3.4. Conclusion
  • +
  • 3.4. Conclusion
  • 4. Open Loop Budget Error @@ -278,7 +278,7 @@
  • 4.1. Noise Budgeting - Theory
  • 4.2. Power Spectral Densities
  • 4.3. Cumulative Amplitude Spectrum
  • -
  • 4.4. Conclusion
  • +
  • 4.4. Conclusion
  • 5. Closed Loop Budget Error @@ -287,7 +287,7 @@
  • 5.2. Reduction thanks to feedback - Required bandwidth
  • -
  • 6. Conclusion
  • +
  • 6. Conclusion
  • @@ -497,8 +497,8 @@ The effect of direct forces/torques applied on the sample (cable forces for inst -
    -

    2.6 Conclusion

    +
    +

    2.6 Conclusion

    @@ -678,8 +678,8 @@ From Figures 11 and 12, we s

    -
    -

    3.4 Conclusion

    +
    +

    3.4 Conclusion

    @@ -900,8 +900,8 @@ xlim([1, 500]); ylim([1e-10 1e -

    4.4 Conclusion

    +
    +

    4.4 Conclusion

    @@ -919,6 +919,9 @@ From Figure 20, we can see that a soft nano-hexapod \(

    +

    +From the total open-loop power spectral density of the sample’s motion error, we can estimate what is the required control bandwidth for the sample’s motion error to be reduced down to \(10nm\). +

    5.1 Approximation of the effect of feedback on the motion error

    @@ -940,10 +943,13 @@ The reduction of the impact of \(d\) on \(y\) thanks to feedback is described by \begin{equation} \frac{y}{d} = \frac{G_d}{1 + KG} \end{equation} +

    +The transfer functions corresponding to \(G_d\) are those identified in Section 2. +

    -As a first approximation, we can consider that the controller is designed in such a way that the loop gain \(KG\) is a pure integrator: +As a first approximation, we can consider that the controller \(K\) is designed in such a way that the loop gain \(KG\) is a pure integrator: \[ L_1(s) = K_1(s) G(s) = \frac{\omega_c}{s} \] where \(\omega_c\) is the crossover frequency.

    @@ -953,107 +959,131 @@ where \(\omega_c\) is the crossover frequency. We may then consider another controller in such a way that the loop gain corresponds to a double integrator with a lead centered with the crossover frequency \(\omega_c\): \[ L_2(s) = K_2(s) G(s) = \left( \frac{\omega_c}{s} \right)^2 \cdot \frac{1 + \frac{s}{\omega_c/2}}{1 + \frac{s}{2\omega_c}} \]

    + + +

    +In the next section, we see how the power spectral density of \(y\) is reduced as a function of the control bandwidth \(\omega_c\). +This will help to determine what is the approximate control bandwidth required such that the rms value of \(y\) is below \(10nm\). +

    5.2 Reduction thanks to feedback - Required bandwidth

    -
    -
    wc = 1*2*pi; % [rad/s]
    -xic = 0.5;
    +

    +Let’s first see how does the Cumulative Amplitude Spectrum of the sample’s motion error is modified by the control. +

    -S = (s/wc)/(1 + s/wc); +

    +In Figure 22 is shown the Cumulative Amplitude Spectrum of the sample’s motion error in Open-Loop and in Closed Loop for several control bandwidth (from 1Hz to 200Hz) and 4 different nano-hexapod stiffnesses. +The controller used in this simulation is \(K_1\). The loop gain is then a pure integrator. +

    -bodeFig({S}, logspace(-1,2,1000)) -
    +

    +In Figure 23 is shown the expected RMS value of the sample’s position error as a function of the control bandwidth, both for \(K_1\) (left plot) and \(K_2\) (right plot). +As expected, it is shown that \(K_2\) performs better than \(K_1\). +This Figure tells us how much control bandwidth is required to attain a certain level of performance, and that for all the considered nano-hexapod stiffnesses. +

    + +

    +The obtained required bandwidth (approximate upper and lower bounds) to obtained a sample’s motion error less than 10nm rms are gathered in Table 1. +

    + + +
    +

    opt_stiff_cas_closed_loop.png +

    +

    Figure 22: Cumulative Amplitude Spectrum of the sample’s motion error in Open-Loop and in Closed Loop for several control bandwidth and 4 different nano-hexapod stiffnesses (png, pdf)

    -
    -
    wc = [1, 5, 10, 20, 50, 100, 200];
     
    -S1 = {zeros(length(wc), 1)};
    -S2 = {zeros(length(wc), 1)};
    -
    -for j = 1:length(wc)
    -    L = (2*pi*wc(j))/s; % Simple integrator
    -    S1{j} = 1/(1 + L);
    -    L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2));
    -    S2{j} = 1/(1 + L);
    -end
    -
    +
    +

    opt_stiff_req_bandwidth_K1_K2.png +

    +

    Figure 23: Expected RMS value of the sample’s motion error \(E_z\) as a function of the control bandwidth when using \(K_1\) and \(K_2\) (png, pdf)

    -
    -
    freqs = dist_f.f;
    +
    +
     
    -figure;
    -hold on;
    -i = 6;
    -forj = 1:length(wc)
    -    set(gca,'ColorOrderIndex',j);
    -    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-', ...
    -         'DisplayName', sprintf('$\\omega_c = %.0f$ [Hz]', wc(j)));
    -end
    -plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-', ...
    -     'DisplayName', 'Open-Loop');
    -plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
    -hold off;
    -set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
    -xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
    -legend('Location', 'northeast');
    -xlim([0.5, 500]); ylim([1e-10 1e-6]);
    -
    -
    ++-
    -
    wc = logspace(0, 3, 100);
    +
    -Dz1_rms = zeros(length(Ks), length(wc)); -Dz2_rms = zeros(length(Ks), length(wc)); -fori = 1:length(Ks) - forj = 1:length(wc) - L = (2*pi*wc(j))/s; - Dz1_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i))); +- L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2)); - Dz2_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i))); - end -end - - +-
    -
    freqs = dist_f.f;
    +
    -figure; -hold on; -fori = 1:length(Ks) - set(gca,'ColorOrderIndex',i); - plot(wc, Dz1_rms(i, :), '-', ... - 'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i))) +- set(gca,'ColorOrderIndex',i); - plot(wc, Dz2_rms(i, :), '--', ... - 'HandleVisibility', 'off') -end -hold off; -set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); -xlabel('Control Bandwidth [Hz]'); ylabel('$E_z\ [m, rms]$') -legend('Location', 'southwest'); -xlim([1, 500]); - ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Table 1: Approximate required control bandwidth such that the motion error is below \(10nm\)
    Nano-Hexapod stiffness [N/m]103104105106107108109
    Required wc with L1 [Hz]1523051000870933870870
    Required wc with L2 [Hz]5766152152248266248
    +
    + +
    +

    6 Conclusion

    +
    +
    +

    +From Figure 23 and Table 1, we can clearly see three different results depending on the nano-hexapod stiffness: +

    +
      +
    • For a soft nano-hexapod (\(k < 10^4\ [N/m]\)), the required bandwidth is \(\omega_c \approx 50-100\ Hz\)
    • +
    • For a nano-hexapods with \(10^5 < k < 10^6\ [N/m]\)), the required bandwidth is \(\omega_c \approx 150-300\ Hz\)
    • +
    • For a stiff nano-hexapods (\(k > 10^7\ [N/m]\)), the required bandwidth is \(\omega_c \approx 250-500\ Hz\)
    • +
    +
    -
    -

    6 Conclusion

    Author: Dehaeze Thomas

    -

    Created: 2020-04-07 mar. 19:33

    +

    Created: 2020-04-08 mer. 12:12

    diff --git a/docs/uncertainty_optimal_stiffness.html b/docs/uncertainty_optimal_stiffness.html index a2c1bcc..0f74acf 100644 --- a/docs/uncertainty_optimal_stiffness.html +++ b/docs/uncertainty_optimal_stiffness.html @@ -1,11 +1,10 @@ - - + Determination of the optimal nano-hexapod’s stiffness @@ -228,7 +227,9 @@