diff --git a/active_damping/index.html b/active_damping/index.html index c8f60b3..a58e314 100644 --- a/active_damping/index.html +++ b/active_damping/index.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +-First, in section 1, we will looked at the undamped system. +First, in section 1, we will looked at the undamped system.
Then, we will compare three active damping techniques:
@@ -417,11 +417,11 @@ The disturbances are:
@@ -435,12 +435,12 @@ The performance of this undamped system will be compared with the damped system
We initialize all the stages with the default parameters.
@@ -491,8 +491,8 @@ save('./mat/controllers.mat',
-
First, we identify the dynamics of the system using the
We initialize elements for the tomography experiment.
@@ -610,8 +610,8 @@ Finally, we save the simulation results for further analysis
We load the results of tomography experiments.
@@ -623,14 +623,14 @@ t = linspace(0, 3, length(En(:,1)));
@@ -657,12 +657,12 @@ Integral Force Feedback is applied on the simscape model.
Let’s load the previously indentified undamped plant:
@@ -673,11 +673,11 @@ Let’s load the previously indentified undamped plant:
-Let’s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure 6).
+Let’s look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure 6).
The controller for each pair of actuator/sensor is:
@@ -697,11 +697,11 @@ The controller for each pair of actuator/sensor is:
-The corresponding loop gains are shown in figure 7.
+The corresponding loop gains are shown in figure 7.
We create the diagonal controller and we add a minus sign as we have a positive
@@ -731,8 +731,8 @@ We save the controller for further analysis.
-The corresponding loop gains are shown in figure 8.
+The corresponding loop gains are shown in figure 8.
We initialize elements for the tomography experiment.
@@ -825,8 +825,8 @@ save('./active_damping/mat/tomo_exp.mat',
We initialize elements for the tomography experiment.
@@ -874,8 +874,8 @@ save('./active_damping/mat/tomo_exp.mat',
We load the results of tomography experiments.
@@ -887,21 +887,21 @@ t = linspace(0, 3, length(En(:,1)));
@@ -928,11 +928,11 @@ Integral Force Feedback:
@@ -946,12 +946,12 @@ The actuator displacement can be measured with a capacitive sensor for instance.
Let’s load the undamped plant:
@@ -962,11 +962,11 @@ Let’s load the undamped plant:
-Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure 12).
+Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure 12).
The Direct Velocity Feedback is defined below.
@@ -987,11 +987,11 @@ A Low pass Filter is added to make the controller transfer function proper.
-The obtained loop gains are shown in figure 13.
+The obtained loop gains are shown in figure 13.
We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.
@@ -1021,12 +1021,12 @@ We save the controller for further analysis.
We initialize elements for the tomography experiment.
@@ -1047,8 +1047,8 @@ save('./mat/controllers.mat',
-
We change the simulation stop time.
@@ -1079,8 +1079,8 @@ save('./active_damping/mat/tomo_exp.mat',
We load the results of tomography experiments.
@@ -1092,21 +1092,21 @@ t = linspace(0, 3, length(En(:,1)));
@@ -1131,11 +1131,11 @@ Direct Velocity Feedback:
@@ -1148,12 +1148,12 @@ In Inertial Control, a feedback is applied between the measured absolute
Let’s load the undamped plant:
@@ -1164,11 +1164,11 @@ Let’s load the undamped plant:
-Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure 17).
+Let’s look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure 17).
-The controller is defined below and the obtained loop gain is shown in figure 18.
+The controller is defined below and the obtained loop gain is shown in figure 18.
Figure 18: Loop Gain for Inertial Control (png, pdf)
We create the diagonal controller and we add a minus sign as we have a positive feedback architecture.
@@ -1219,12 +1219,12 @@ We save the controller for further analysis.
We initialize elements for the tomography experiment.
@@ -1245,8 +1245,8 @@ save('./mat/controllers.mat',
-
We change the simulation stop time.
@@ -1277,8 +1277,8 @@ save('./active_damping/mat/tomo_exp.mat',
We load the results of tomography experiments.
@@ -1290,21 +1290,21 @@ t = linspace(0, 3, length(En_ine(:,1)));
@@ -1326,15 +1326,15 @@ Inertial Control:
Figure 22: Sensitivity to ground motion in the Z direction on the Z motion error (png, pdf)
Figure 23: Compliance in the Z direction: Sensitivity of direct forces applied on the sample in the Z direction on the Z motion error (png, pdf)
Figure 24: Sensitivity to forces applied in the Z direction by the Spindle on the Z motion error (png, pdf)
Figure 25: Sensitivity to forces applied in the Z direction by the Y translation stage on the Z motion error (png, pdf)
Window used for
Figure 33: CPS of the rotation errors for applied Active Damping techniques (png, pdf)
@@ -1487,9 +1487,9 @@ This Matlab function is accessible h
We initialize all the stages with the default parameters.
Created: 2020-01-20 lun. 17:40 Created: 2020-01-20 lun. 17:451.1.2 Identification
+1.1.2 Identification
linearize
function.
@@ -541,25 +541,25 @@ And we save them for further analysis.
1.1.3 Obtained Plants for Active Damping
+1.1.3 Obtained Plants for Active Damping
1.2 Tomography Experiment
+1.2 Tomography Experiment
1.2.1 Simulation
+1.2.1 Simulation
1.2.2 Results
+1.2.2 Results
2 Integral Force Feedback
+2 Integral Force Feedback
2.1 Control Design
+2.1 Control Design
2.1.1 Plant
+2.1.1 Plant
2.1.2 Control Design
+2.1.2 Control Design
2.1.3 Diagonal Controller
+2.1.3 Diagonal Controller
2.1.4 IFF with High Pass Filter
+2.1.4 IFF with High Pass Filter
w_hpf = 2*pi*10; % Cut-off frequency for the high pass filter [rad/s]
@@ -743,10 +743,10 @@ K_iff = 2*pi
2.2 Tomography Experiment
+2.2 Tomography Experiment
2.2.1 Simulation with IFF Controller
+2.2.1 Simulation with IFF Controller
2.2.2 Simulation with IFF Controller with added High Pass Filter
+2.2.2 Simulation with IFF Controller with added High Pass Filter
2.2.3 Compare with Undamped system
+2.2.3 Compare with Undamped system
2.3 Conclusion
+2.3 Conclusion
3 Direct Velocity Feedback
+3 Direct Velocity Feedback
3.1 Control Design
+3.1 Control Design
3.1.1 Plant
+3.1.1 Plant
3.1.2 Control Design
+3.1.2 Control Design
3.1.3 Diagonal Controller
+3.1.3 Diagonal Controller
3.2 Tomography Experiment
+3.2 Tomography Experiment
3.2.1 Initialize the Simulation
+3.2.1 Initialize the Simulation
3.2.2 Simulation
+3.2.2 Simulation
3.2.3 Compare with Undamped system
+3.2.3 Compare with Undamped system
3.3 Conclusion
+3.3 Conclusion
4 Inertial Control
+4 Inertial Control
4.1 Control Design
+4.1 Control Design
4.1.1 Plant
+4.1.1 Plant
4.1.2 Control Design
+4.1.2 Control Design
4.1.3 Diagonal Controller
+4.1.3 Diagonal Controller
4.2 Tomography Experiment
+4.2 Tomography Experiment
4.2.1 Initialize the Simulation
+4.2.1 Initialize the Simulation
4.2.2 Simulation
+4.2.2 Simulation
4.2.3 Compare with Undamped system
+4.2.3 Compare with Undamped system
4.3 Conclusion
+4.3 Conclusion
5 Comparison
+5 Comparison
-5.1 Load the plants
+5.1 Load the plants
load('./active_damping/mat/plants.mat', 'G', 'G_iff', 'G_ine', 'G_dvf');
@@ -1343,11 +1343,11 @@ Inertial Control:
5.2 Sensitivity to Disturbance
+5.2 Sensitivity to Disturbance
5.3 Damped Plant
+5.3 Damped Plant
5.4 Tomography Experiment
+5.4 Tomography Experiment
5.4.1 Load the Simulation Data
+5.4.1 Load the Simulation Data
load('./active_damping/mat/tomo_exp.mat', 'En', 'En_iff_hpf', 'En_dvf', 'En_ine');
@@ -1427,8 +1427,8 @@ t = linspace(0, 3, length(En(:,1)));
5.4.2 Frequency Domain Analysis
+5.4.2 Frequency Domain Analysis
pwelch
function.
@@ -1440,28 +1440,28 @@ han_win = hanning(ceil(length(En(:, 1))
-6 Useful Functions
+6 Useful Functions
6.1 prepareTomographyExperiment
+6.1 prepareTomographyExperiment
Function Description
-Function Description
+function [] = prepareTomographyExperiment(args)
@@ -1497,9 +1497,9 @@ This Matlab function is accessible h
Optional Parameters
-Optional Parameters
+arguments
args.nass_actuator char {mustBeMember(args.nass_actuator,{'piezo', 'lorentz'})} = 'piezo'
@@ -1511,9 +1511,9 @@ This Matlab function is accessible h
Initialize the Simulation
-Initialize the Simulation
+