UP | HOME

Vibrations induced by the Slip-Ring and the Spindle

Table of Contents

1 Experimental Setup

All the stages are OFF.

Two geophone are use:

  • One on the marble (corresponding to the first column in the data)
  • One at the sample location (corresponding to the second column in the data)

Two voltage amplifiers are used, their setup is:

  • gain of 60dB
  • AC/DC switch on AC
  • Low pass filter at 1kHz

A first order low pass filter is also added at the input of the voltage amplifiers.

Goal:

  • Identify the vibrations induced by the rotation of the Slip-Ring and Spindle

Three measurements are done:

Measurement File Description
mat/data_024.mat All the stages are OFF
mat/data_025.mat The slip-ring is ON and rotates at 6rpm. The spindle is OFF
mat/data_026.mat The slip-ring and spindle are both ON. They are both turning at 6rpm

Each of the measurement mat file contains one data array with 3 columns:

Column number Description
1 Geophone - Marble
2 Geophone - Sample
3 Time

A movie showing the experiment is shown on figure 1.

VID_20190510_155655.gif

Figure 1: Movie of the experiment, rotation speed is 6rpm

2 Data Analysis

All the files (data and Matlab scripts) are accessible here.

2.1 Load data

of = load('mat/data_024.mat', 'data'); of = of.data;
sr = load('mat/data_025.mat', 'data'); sr = sr.data;
sp = load('mat/data_026.mat', 'data'); sp = sp.data;

2.2 Time domain plots

figure;
hold on;
plot(sp(:, 3), sp(:, 1), 'DisplayName', 'Spindle - 6rpm');
plot(sr(:, 3), sr(:, 1), 'DisplayName', 'Slip-Ring - 6rpm');
plot(of(:, 3), of(:, 1), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 100]); ylim([-10 10]);
legend('Location', 'northeast');

slip_ring_spindle_marble_time.png

Figure 2: Measurement of the geophone located on the marble - Time domain

figure;
hold on;
plot(sp(:, 3), sp(:, 2), 'DisplayName', 'Spindle and Slip-Ring');
plot(sr(:, 3), sr(:, 2), 'DisplayName', 'Only Slip-Ring');
plot(of(:, 3), of(:, 2), 'DisplayName', 'OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 100]); ylim([-10 10]);
legend('Location', 'northeast');

slip_ring_spindle_sample_time.png

Figure 3: Measurement of the geophone at the sample location - Time domain

2.3 Frequency Domain

We first compute some parameters that will be used for the PSD computation.

dt = of(2, 3)-of(1, 3);

Fs = 1/dt; % [Hz]

win = hanning(ceil(10*Fs));

Then we compute the Power Spectral Density using pwelch function.

First for the geophone located on the marble

[pxof_m, f] = pwelch(of(:, 1), win, [], [], Fs);
[pxsr_m, ~] = pwelch(sr(:, 1), win, [], [], Fs);
[pxsp_m, ~] = pwelch(sp(:, 1), win, [], [], Fs);

And for the geophone located at the sample position.

[pxof_s, f] = pwelch(of(:, 2), win, [], [], Fs);
[pxsr_s, ~] = pwelch(sr(:, 2), win, [], [], Fs);
[pxsp_s, ~] = pwelch(sp(:, 2), win, [], [], Fs);

And we plot the ASD of the measured signals:

  • figure 4 for the geophone located on the marble
  • figure 5 for the geophone at the sample position
figure;
hold on;
plot(f, sqrt(pxsp_m), 'DisplayName', 'Spindle - 6rpm');
plot(f, sqrt(pxsr_m), 'DisplayName', 'Slip-Ring - 6rpm');
plot(f, sqrt(pxof_m), 'DisplayName', 'OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([0.1, 500]);

sr_sp_psd_marble_compare.png

Figure 4: Comparison of the ASD of the measured voltage from the Geophone on the marble

figure;
hold on;
plot(f, sqrt(pxsp_s), 'DisplayName', 'Spindle - 6rpm');
plot(f, sqrt(pxsr_s), 'DisplayName', 'Slip-Ring - 6rpm');
plot(f, sqrt(pxof_s), 'DisplayName', 'OFF');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([0.1, 500]);

sr_sp_psd_sample_compare.png

Figure 5: Comparison of the ASD of the measured voltage from the Geophone at the sample location

2.4 Conclusion

The slip-ring rotation induces almost no vibrations on the marble, and only a little vibrations on the sample above 100Hz.

The spindle rotation induces a lot of vibrations of the sample as well as on the granite. There is a huge peak at 24Hz on the sample vibration but not on the granite vibration.

Author: Dehaeze Thomas

Created: 2019-05-13 lun. 13:24

Validate