#+TITLE: Compliance Measurement of the Micro Station :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:shell :eval no-export :END: * Setup ** Position of inertial sensors on top of the micro-hexapod Orientation is relative to the frame determined by the X-ray | *Num* | *Position* | *Orientation* | *Sensibility* | *Channels* | |-------+------------+---------------+---------------+------------| | 1 | [0, +A, 0] | [x, y, z] | 1V/g | 1-3 | | 2 | [-B, 0, 0] | [x, y, z] | 1V/g | 4-6 | | 3 | [0, -A, 0] | [x, y, z] | 0.1V/g | 7-9 | | 4 | [+B, 0, 0] | [x, y, z] | 1V/g | 10-12 | Instrumented Hammer: - Channel 13 - Sensibility: 230 uV/N | Acc Number | Dir | Channel Number | |------------+-----+----------------| | 1 | x | 1 | | 1 | y | 2 | | 1 | z | 3 | | 2 | x | 4 | | 2 | y | 5 | | 2 | z | 6 | | 3 | x | 7 | | 3 | y | 8 | | 3 | z | 9 | | 4 | x | 10 | | 4 | y | 11 | | 4 | z | 12 | | Hammer | | 13 | From the acceleration measurement of the 4 accelerometers, we can compute the translations and rotations: | | *Formula* | |-------+--------------------------| | $D_x$ | (1x + 2x + 3x + 4x)/4 | | $D_y$ | (1y + 2y + 3y + 4y)/4 | | $D_z$ | (1z + 2z + 3z + 4z)/4 | | $R_x$ | (1z - 3z)/A | | $R_y$ | (2z - 4z)/B | | $R_z$ | (3x - 1x)/A, (4y - 2y)/B | | | *Formula* | |-------+-----------------------| | $D_x$ | (1 + 4 + 7 + 10)/4 | | $D_y$ | (2 + 5 + 8 + 11)/4 | | $D_z$ | (3 + 6 + 9 + 12)/4 | | $R_x$ | (1 - 9)/A | | $R_y$ | (6 - 12)/B | | $R_z$ | (7 - 1)/A, (11 - 5)/B | ** Hammer blow position/orientation | *Num* | *Direction* | *Position* | |-------+-------------+------------| | 1 | -Y | [0, +A, 0] | | 2 | -Z | [0, +A, 0] | | 3 | X | [-B, 0, 0] | | 4 | -Z | [-B, 0, 0] | | 5 | Y | [0, -A, 0] | | 6 | -Z | [0, -A, 0] | | 7 | -X | [+B, 0, 0] | | 8 | -Z | [+B, 0, 0] | | 9 | -X | [0, -A, 0] | | 10 | -X | [0, +A, 0] | From hammer blows to pure forces / torques: | | *Formula* | Alternative | |-------+--------------+-------------| | $F_x$ | +3 | -7 | | $F_y$ | -1 | +5 | | $F_z$ | -(2 + 6)/2 | -(4 + 8)/2 | | $M_x$ | A/2*(2 - 6) | | | $M_y$ | B/2*(8 - 4) | | | $M_z$ | A/2*(10 - 9) | | * Results ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data #+begin_src matlab m1 = load('data/Measurement1.mat'); m2 = load('data/Measurement2.mat'); m3 = load('data/Measurement3.mat'); m4 = load('data/Measurement4.mat'); m5 = load('data/Measurement5.mat'); m6 = load('data/Measurement6.mat'); m7 = load('data/Measurement7.mat'); m8 = load('data/Measurement8.mat'); m9 = load('data/Measurement9.mat'); m10 = load('data/Measurement10.mat'); #+end_src ** Compute Transfer Functions #+begin_src matlab freqs = m3.FFT1_H1_1_13_X_Val; w = 2*pi*freqs'; A = 0.14; B = 0.14; #+end_src #+begin_src matlab G = zeros(6,6,length(freqs)); % Fx G(1,1,:) = (m3.FFT1_H1_1_13_Y_ReIm + m3.FFT1_H1_4_13_Y_ReIm + m3.FFT1_H1_7_13_Y_ReIm + m3.FFT1_H1_10_13_Y_ReIm)./4; G(2,1,:) = (m3.FFT1_H1_2_13_Y_ReIm + m3.FFT1_H1_5_13_Y_ReIm + m3.FFT1_H1_8_13_Y_ReIm + m3.FFT1_H1_11_13_Y_ReIm)./4; G(3,1,:) = (m3.FFT1_H1_3_13_Y_ReIm + m3.FFT1_H1_6_13_Y_ReIm + m3.FFT1_H1_9_13_Y_ReIm + m3.FFT1_H1_12_13_Y_ReIm)./4; G(4,1,:) = (m3.FFT1_H1_1_13_Y_ReIm - m3.FFT1_H1_9_13_Y_ReIm )./A; G(5,1,:) = (m3.FFT1_H1_6_13_Y_ReIm - m3.FFT1_H1_12_13_Y_ReIm)./B; G(6,1,:) = (m3.FFT1_H1_7_13_Y_ReIm - m3.FFT1_H1_1_13_Y_ReIm )./A; % Fy G(1,2,:) = -(m1.FFT1_H1_2_13_Y_ReIm + m1.FFT1_H1_5_13_Y_ReIm + m1.FFT1_H1_8_13_Y_ReIm + m1.FFT1_H1_11_13_Y_ReIm)./4; G(2,2,:) = -(m1.FFT1_H1_2_13_Y_ReIm + m1.FFT1_H1_5_13_Y_ReIm + m1.FFT1_H1_8_13_Y_ReIm + m1.FFT1_H1_11_13_Y_ReIm)./4; G(3,2,:) = -(m1.FFT1_H1_3_13_Y_ReIm + m1.FFT1_H1_6_13_Y_ReIm + m1.FFT1_H1_9_13_Y_ReIm + m1.FFT1_H1_12_13_Y_ReIm)./4; G(4,2,:) = -(m1.FFT1_H1_1_13_Y_ReIm - m1.FFT1_H1_9_13_Y_ReIm )./A; G(5,2,:) = -(m1.FFT1_H1_6_13_Y_ReIm - m1.FFT1_H1_12_13_Y_ReIm)./B; G(6,2,:) = -(m1.FFT1_H1_7_13_Y_ReIm - m1.FFT1_H1_1_13_Y_ReIm )./A; % Fz G(1,3,:) = -1/2./(1./(m2.FFT1_H1_1_13_Y_ReIm + m2.FFT1_H1_4_13_Y_ReIm + m2.FFT1_H1_7_13_Y_ReIm + m2.FFT1_H1_10_13_Y_ReIm) + ... 1./(m6.FFT1_H1_1_13_Y_ReIm + m6.FFT1_H1_4_13_Y_ReIm + m6.FFT1_H1_7_13_Y_ReIm + m6.FFT1_H1_10_13_Y_ReIm)); G(2,3,:) = -1/2./(1./(m2.FFT1_H1_2_13_Y_ReIm + m2.FFT1_H1_5_13_Y_ReIm + m2.FFT1_H1_8_13_Y_ReIm + m2.FFT1_H1_11_13_Y_ReIm) + ... 1./(m6.FFT1_H1_2_13_Y_ReIm + m6.FFT1_H1_5_13_Y_ReIm + m6.FFT1_H1_8_13_Y_ReIm + m6.FFT1_H1_11_13_Y_ReIm)); G(3,3,:) = -1/2./(1./(m2.FFT1_H1_3_13_Y_ReIm + m2.FFT1_H1_6_13_Y_ReIm + m2.FFT1_H1_9_13_Y_ReIm + m2.FFT1_H1_12_13_Y_ReIm) + ... 1./(m6.FFT1_H1_3_13_Y_ReIm + m6.FFT1_H1_6_13_Y_ReIm + m6.FFT1_H1_9_13_Y_ReIm + m6.FFT1_H1_12_13_Y_ReIm)); G(4,3,:) = -2/A./(1./(m2.FFT1_H1_1_13_Y_ReIm - m2.FFT1_H1_9_13_Y_ReIm) + ... 1./(m6.FFT1_H1_1_13_Y_ReIm - m6.FFT1_H1_9_13_Y_ReIm)); G(5,3,:) = -2/B./(1./(m2.FFT1_H1_6_13_Y_ReIm - m2.FFT1_H1_12_13_Y_ReIm) + ... 1./(m6.FFT1_H1_6_13_Y_ReIm - m6.FFT1_H1_12_13_Y_ReIm)); G(6,3,:) = -2/A./(1./(m2.FFT1_H1_7_13_Y_ReIm - m2.FFT1_H1_1_13_Y_ReIm) + ... 1./(m6.FFT1_H1_7_13_Y_ReIm - m6.FFT1_H1_1_13_Y_ReIm)); % Mx G(1,4,:) = 1/A/2./(1./(m2.FFT1_H1_1_13_Y_ReIm + m2.FFT1_H1_4_13_Y_ReIm + m2.FFT1_H1_7_13_Y_ReIm + m2.FFT1_H1_10_13_Y_ReIm) - ... 1./(m6.FFT1_H1_1_13_Y_ReIm + m6.FFT1_H1_4_13_Y_ReIm + m6.FFT1_H1_7_13_Y_ReIm + m6.FFT1_H1_10_13_Y_ReIm)); G(2,4,:) = 1/A/2./(1./(m2.FFT1_H1_2_13_Y_ReIm + m2.FFT1_H1_5_13_Y_ReIm + m2.FFT1_H1_8_13_Y_ReIm + m2.FFT1_H1_11_13_Y_ReIm) - ... 1./(m6.FFT1_H1_2_13_Y_ReIm + m6.FFT1_H1_5_13_Y_ReIm + m6.FFT1_H1_8_13_Y_ReIm + m6.FFT1_H1_11_13_Y_ReIm)); G(3,4,:) = 1/A/2./(1./(m2.FFT1_H1_3_13_Y_ReIm + m2.FFT1_H1_6_13_Y_ReIm + m2.FFT1_H1_9_13_Y_ReIm + m2.FFT1_H1_12_13_Y_ReIm) - ... 1./(m6.FFT1_H1_3_13_Y_ReIm + m6.FFT1_H1_6_13_Y_ReIm + m6.FFT1_H1_9_13_Y_ReIm + m6.FFT1_H1_12_13_Y_ReIm)); G(4,4,:) = 1/A^2*2./(1./(m2.FFT1_H1_1_13_Y_ReIm - m2.FFT1_H1_9_13_Y_ReIm) - ... 1./(m6.FFT1_H1_1_13_Y_ReIm - m6.FFT1_H1_9_13_Y_ReIm)); G(5,4,:) = 2/A/B./(1./(m2.FFT1_H1_6_13_Y_ReIm - m2.FFT1_H1_12_13_Y_ReIm) - ... 1./(m6.FFT1_H1_6_13_Y_ReIm - m6.FFT1_H1_12_13_Y_ReIm)); G(6,4,:) = 1/A^2*2./(1./(m2.FFT1_H1_7_13_Y_ReIm - m2.FFT1_H1_1_13_Y_ReIm) - ... 1./(m6.FFT1_H1_7_13_Y_ReIm - m6.FFT1_H1_1_13_Y_ReIm)); % My G(1,5,:) = 1/B/2./(1./(m8.FFT1_H1_1_13_Y_ReIm + m8.FFT1_H1_4_13_Y_ReIm + m8.FFT1_H1_7_13_Y_ReIm + m8.FFT1_H1_10_13_Y_ReIm) - ... 1./(m4.FFT1_H1_1_13_Y_ReIm + m4.FFT1_H1_4_13_Y_ReIm + m4.FFT1_H1_7_13_Y_ReIm + m4.FFT1_H1_10_13_Y_ReIm)); G(2,5,:) = 1/B/2./(1./(m8.FFT1_H1_2_13_Y_ReIm + m8.FFT1_H1_5_13_Y_ReIm + m8.FFT1_H1_8_13_Y_ReIm + m8.FFT1_H1_11_13_Y_ReIm) - ... 1./(m4.FFT1_H1_2_13_Y_ReIm + m4.FFT1_H1_5_13_Y_ReIm + m4.FFT1_H1_8_13_Y_ReIm + m4.FFT1_H1_11_13_Y_ReIm)); G(3,5,:) = 1/B/2./(1./(m8.FFT1_H1_3_13_Y_ReIm + m8.FFT1_H1_6_13_Y_ReIm + m8.FFT1_H1_9_13_Y_ReIm + m8.FFT1_H1_12_13_Y_ReIm) - ... 1./(m4.FFT1_H1_3_13_Y_ReIm + m4.FFT1_H1_6_13_Y_ReIm + m4.FFT1_H1_9_13_Y_ReIm + m4.FFT1_H1_12_13_Y_ReIm)); G(4,5,:) = 2/B/A./(1./(m8.FFT1_H1_1_13_Y_ReIm - m8.FFT1_H1_9_13_Y_ReIm) - ... 1./(m4.FFT1_H1_1_13_Y_ReIm - m4.FFT1_H1_9_13_Y_ReIm)); G(5,5,:) = 1/B^2*2./(1./(m8.FFT1_H1_6_13_Y_ReIm - m8.FFT1_H1_12_13_Y_ReIm) - ... 1./(m4.FFT1_H1_6_13_Y_ReIm - m4.FFT1_H1_12_13_Y_ReIm)); G(6,5,:) = 2/B/A./(1./(m8.FFT1_H1_7_13_Y_ReIm - m8.FFT1_H1_1_13_Y_ReIm) - ... 1./(m4.FFT1_H1_7_13_Y_ReIm - m4.FFT1_H1_1_13_Y_ReIm)); % Mz G(1,6,:) = 1/A/2./(1./(m10.FFT1_H1_1_13_Y_ReIm + m10.FFT1_H1_4_13_Y_ReIm + m10.FFT1_H1_7_13_Y_ReIm + m10.FFT1_H1_10_13_Y_ReIm) - ... 1./(m9.FFT1_H1_1_13_Y_ReIm + m9.FFT1_H1_4_13_Y_ReIm + m9.FFT1_H1_7_13_Y_ReIm + m9.FFT1_H1_10_13_Y_ReIm)); G(2,6,:) = 1/A/2./(1./(m10.FFT1_H1_2_13_Y_ReIm + m10.FFT1_H1_5_13_Y_ReIm + m10.FFT1_H1_8_13_Y_ReIm + m10.FFT1_H1_11_13_Y_ReIm) - ... 1./(m9.FFT1_H1_2_13_Y_ReIm + m9.FFT1_H1_5_13_Y_ReIm + m9.FFT1_H1_8_13_Y_ReIm + m9.FFT1_H1_11_13_Y_ReIm)); G(3,6,:) = 1/A/2./(1./(m10.FFT1_H1_3_13_Y_ReIm + m10.FFT1_H1_6_13_Y_ReIm + m10.FFT1_H1_9_13_Y_ReIm + m10.FFT1_H1_12_13_Y_ReIm) - ... 1./(m9.FFT1_H1_3_13_Y_ReIm + m9.FFT1_H1_6_13_Y_ReIm + m9.FFT1_H1_9_13_Y_ReIm + m9.FFT1_H1_12_13_Y_ReIm)); G(4,6,:) = 1/A^2*2./(1./(m10.FFT1_H1_1_13_Y_ReIm - m10.FFT1_H1_9_13_Y_ReIm) - ... 1./(m9.FFT1_H1_1_13_Y_ReIm - m9.FFT1_H1_9_13_Y_ReIm)); G(5,6,:) = 2*A/B./(1./(m10.FFT1_H1_6_13_Y_ReIm - m10.FFT1_H1_12_13_Y_ReIm) - ... 1./(m9.FFT1_H1_6_13_Y_ReIm - m9.FFT1_H1_12_13_Y_ReIm)); G(6,6,:) = 1/A^2*2./(1./(m10.FFT1_H1_7_13_Y_ReIm - m10.FFT1_H1_1_13_Y_ReIm) - ... 1./(m9.FFT1_H1_7_13_Y_ReIm - m9.FFT1_H1_1_13_Y_ReIm)); #+end_src ** Diagonal Dynamics #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(1,1,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(2,2,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(3,3,:))./(-w.^2)), '.') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 2e-6]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(1,1,:))./(-w.^2)), '.', 'DisplayName', '$D_x/F_x$') plot(freqs, 180/pi*angle(squeeze(G(2,2,:))./(-w.^2)), '.', 'DisplayName', '$D_y/F_y$') plot(freqs, 180/pi*angle(squeeze(G(3,3,:))./(-w.^2)), '.', 'DisplayName', '$D_z/F_z$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_diagonal_translations.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:compliance_diagonal_translations #+caption: Dynamics from Forces to Translations #+RESULTS: [[file:figs/compliance_diagonal_translations.png]] #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(4,4,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(5,5,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(6,6,:))./(-w.^2)), '.') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [rad/Nm]'); set(gca, 'XTickLabel',[]); ylim([1e-7, 2e-4]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(4,4,:))./(-w.^2)), '.', 'DisplayName', '$R_x/M_x$') plot(freqs, 180/pi*angle(squeeze(G(5,5,:))./(-w.^2)), '.', 'DisplayName', '$R_y/M_y$') plot(freqs, 180/pi*angle(squeeze(G(6,6,:))./(-w.^2)), '.', 'DisplayName', '$R_z/M_z$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_diagonal_rotations.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:compliance_diagonal_rotations #+caption: Dynamics from Torques to Rotations #+RESULTS: [[file:figs/compliance_diagonal_rotations.png]] ** Equivalent Stiffness and Mass Estimation #+begin_src matlab K = [1e7, 1e7, 2e8, 5e7, 3e7, 2e7]; f_res = [125, 135, 390, 335, 335, 160]; #+end_src #+begin_src matlab M = [20, 20, 20, 11, 7, 20]; f_res_est = sqrt(K./M)./(2*pi); #+end_src Here is the inertia / stiffness to the granite that can represent the micro-station compliance dynamics: #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([K'], {'x', 'y', 'z', 'Rx', 'Ry', 'Rz'}, {'Stiffness', 'Inertia'}, ' %.1g '); #+end_src #+RESULTS: | Stiffness | Inertia | |-----------+-------------| | x | 10000000.0 | | y | 10000000.0 | | z | 200000000.0 | | Rx | 50000000.0 | | Ry | 30000000.0 | | Rz | 20000000.0 | ** Compare with Model #+begin_src matlab load('./mat/model.mat', 'Gm'); #+end_src #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(1,1,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(2,2,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(3,3,:))./(-w.^2)), '.') set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gm(1,1,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(2,2,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(3,3,:), freqs, 'Hz'))), '-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 2e-6]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(1,1,:))./(-w.^2)), '.', 'DisplayName', '$D_x/F_x$') plot(freqs, 180/pi*angle(squeeze(G(2,2,:))./(-w.^2)), '.', 'DisplayName', '$D_y/F_y$') plot(freqs, 180/pi*angle(squeeze(G(3,3,:))./(-w.^2)), '.', 'DisplayName', '$D_z/F_z$') set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(1,1,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(2,2,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(3,3,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_diagonal_translations_comp_model.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:compliance_diagonal_translations_comp_model #+caption: Dynamics from Forces to Translations #+RESULTS: [[file:figs/compliance_diagonal_translations_comp_model.png]] #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(4,4,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(5,5,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(6,6,:))./(-w.^2)), '.') set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gm(4,4,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(5,5,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(6,6,:), freqs, 'Hz'))), '-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [rad/Nm]'); set(gca, 'XTickLabel',[]); % ylim([1e-9, 2e-6]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(4,4,:))./(-w.^2)), '.', 'DisplayName', '$R_x/M_x$') plot(freqs, 180/pi*angle(squeeze(G(5,5,:))./(-w.^2)), '.', 'DisplayName', '$R_y/M_y$') plot(freqs, 180/pi*angle(squeeze(G(6,6,:))./(-w.^2)), '.', 'DisplayName', '$R_z/M_z$') set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(4,4,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(5,5,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(6,6,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_diagonal_rotations_comp_model.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:compliance_diagonal_rotations_comp_model #+caption: Dynamics from Torques to Rotations #+RESULTS: [[file:figs/compliance_diagonal_rotations_comp_model.png]] | | Stiffness | Unit | |-----------+-----------+----------| | $K_x$ | 1e7 | [N/m] | | $K_y$ | 1e7 | [N/m] | | $K_z$ | 2e8 | [N/m] | | $K_{R_x}$ | 5e7 | [Nm/rad] | | $K_{R_y}$ | 3e7 | [Nm/rad] | | $K_{R_z}$ | 2e7 | [Nm/rad] | ** Coupling Dynamics #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(1,1,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(2,1,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(3,1,:))./(-w.^2)), '.') set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gm(1,1,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(2,1,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(3,1,:), freqs, 'Hz'))), '-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 2e-6]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(1,1,:))./(-w.^2)), '.', 'DisplayName', '$D_x/F_x$') plot(freqs, 180/pi*angle(squeeze(G(2,1,:))./(-w.^2)), '.', 'DisplayName', '$D_y/F_x$') plot(freqs, 180/pi*angle(squeeze(G(3,1,:))./(-w.^2)), '.', 'DisplayName', '$D_z/F_x$') set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(1,1,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(2,1,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(3,1,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src #+begin_src matlab figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(G(5,1,:))./(-w.^2)), '.') plot(freqs, abs(squeeze(G(4,2,:))./(-w.^2)), '.') set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gm(5,1,:), freqs, 'Hz'))), '-') plot(freqs, abs(squeeze(freqresp(Gm(4,2,:), freqs, 'Hz'))), '-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 2e-6]); ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*angle(squeeze(G(5,1,:))./(-w.^2)), '.', 'DisplayName', '$R_y/F_x$') plot(freqs, 180/pi*angle(squeeze(G(4,2,:))./(-w.^2)), '.', 'DisplayName', '$R_x/F_y$') set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(5,1,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') plot(freqs, 180/pi*angle(squeeze(freqresp(Gm(4,2,:), freqs, 'Hz'))), '-', 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Freqency [Hz]'); ylabel('Phase [deg]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([30, 300]); #+end_src