#+TITLE: Vibrations induced by the Slip-Ring and the Spindle
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:shell :eval no-export
:END:
* Experimental Setup
*Setup*:
One geophone is located on the marble, the other one on the floor (see figure [[fig:experimental_setup]]).
Two geophone are use:
- One on the floor (corresponding to the first column in the data)
- One at the marble location (corresponding to the second column in the data)
Two voltage amplifiers are used, their setup is:
- gain of 60dB
- AC/DC switch on AC
- Low pass filter at 1kHz
A first order low pass filter is also added at the input of the voltage amplifiers.
*Goal*:
- Identify the marble dynamics in all the directions
*Measurements*:
Three measurements are done:
| Measurement File | Description |
|--------------------+-------------|
| =mat/data_037.mat= | Z direction |
| =mat/data_038.mat= | N direction |
| =mat/data_039.mat= | E direction |
Each of the measurement =mat= file contains one =data= array with 3 columns:
| Column number | Description |
|---------------+-------------------|
| 1 | Geophone - Floor |
| 2 | Geophone - Marble |
| 3 | Time |
#+name: fig:experimental_setup
#+caption: Picture of the experimental setup
#+attr_html: :width 500px
[[file:./img/IMG_20190513_161729.jpg]]
#+name: fig:experimental_setup_bix
#+caption: Picture of the experimental setup
#+attr_html: :width 500px
[[file:./img/IMG_20190513_161718.jpg]]
* Data Analysis
:PROPERTIES:
:header-args:matlab+: :tangle matlab/marble_dynamics.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<>
** ZIP file containing the data and matlab files :ignore:
#+begin_src bash :exports none :results none
if [ matlab/marble_dynamics.m -nt data/marble_dynamics.zip ]; then
cp matlab/marble_dynamics.m marble_dynamics.m;
zip data/marble_dynamics \
mat/data_037.mat \
mat/data_038.mat \
mat/data_039.mat \
marble_dynamics.m
rm marble_dynamics.m;
fi
#+end_src
#+begin_note
All the files (data and Matlab scripts) are accessible [[file:data/marble_dynamics.zip][here]].
#+end_note
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Load data
#+begin_src matlab
m_z = load('mat/data_037.mat', 'data'); m_z = m_z.data;
m_n = load('mat/data_038.mat', 'data'); m_n = m_n.data;
m_e = load('mat/data_039.mat', 'data'); m_e = m_e.data;
#+end_src
** Time domain plots
#+begin_src matlab
figure;
subplot(1, 3, 1);
hold on;
plot(m_z(:, 3), m_z(:, 2), 'DisplayName', 'Marble - Z');
plot(m_z(:, 3), m_z(:, 1), 'DisplayName', 'Floor - Z');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 100]); ylim([-2 2]);
legend('Location', 'northeast');
subplot(1, 3, 2);
hold on;
plot(m_n(:, 3), m_n(:, 2), 'DisplayName', 'Marble - N');
plot(m_n(:, 3), m_n(:, 1), 'DisplayName', 'Floor - N');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 100]); ylim([-2 2]);
legend('Location', 'northeast');
subplot(1, 3, 3);
hold on;
plot(m_e(:, 3), m_e(:, 2), 'DisplayName', 'Marble - E');
plot(m_e(:, 3), m_e(:, 1), 'DisplayName', 'Floor - E');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 100]); ylim([-2 2]);
legend('Location', 'northeast');
#+end_src
#+NAME: fig:marble_floor_motion_time
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/marble_floor_motion_time.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
<>
#+end_src
#+NAME: fig:marble_floor_motion_time
#+CAPTION: Floor and ground motion
#+RESULTS: fig:marble_floor_motion_time
[[file:figs/marble_floor_motion_time.png]]
** Compute the power spectral densities
We first compute some parameters that will be used for the PSD computation.
#+begin_src matlab :results none
dt = m_z(2, 3)-m_z(1, 3);
Fs = 1/dt; % [Hz]
win = hanning(ceil(10*Fs));
#+end_src
Then we compute the Power Spectral Density using =pwelch= function.
#+begin_src matlab
[px_fz, f] = pwelch(m_z(:, 1), win, [], [], Fs);
[px_gz, ~] = pwelch(m_z(:, 2), win, [], [], Fs);
[px_fn, ~] = pwelch(m_n(:, 1), win, [], [], Fs);
[px_gn, ~] = pwelch(m_n(:, 2), win, [], [], Fs);
[px_fe, ~] = pwelch(m_e(:, 1), win, [], [], Fs);
[px_ge, ~] = pwelch(m_e(:, 2), win, [], [], Fs);
#+end_src
The results are shown on figure [[fig:floor_marble_psd_z]] for the Z direction, figure [[fig:floor_marble_psd_n]] for the north direction, and figure [[fig:floor_marble_psd_e]] for the east direction.
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(px_fz), 'DisplayName', 'Floor - Z');
plot(f, sqrt(px_gz), 'DisplayName', 'Granite - Z');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:floor_marble_psd_z
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/floor_marble_psd_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<>
#+end_src
#+NAME: fig:floor_marble_psd_z
#+CAPTION: Amplitude Spectral Density of the measured voltage corresponding to the geophone located on the floor and on the marble - Z direction
#+RESULTS: fig:floor_marble_psd_z
[[file:figs/floor_marble_psd_z.png]]
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(px_fn), 'DisplayName', 'Floor - N');
plot(f, sqrt(px_gn), 'DisplayName', 'Granite - N');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:floor_marble_psd_n
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/floor_marble_psd_n.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<>
#+end_src
#+NAME: fig:floor_marble_psd_n
#+CAPTION: Amplitude Spectral Density of the measured voltage corresponding to the geophone located on the floor and on the marble - N direction
#+RESULTS: fig:floor_marble_psd_n
[[file:figs/floor_marble_psd_n.png]]
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(px_fe), 'DisplayName', 'Floor - E');
plot(f, sqrt(px_ge), 'DisplayName', 'Granite - E');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
legend('Location', 'southwest');
xlim([0.1, 500]);
#+end_src
#+NAME: fig:floor_marble_psd_e
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/floor_marble_psd_e.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<>
#+end_src
#+NAME: fig:floor_marble_psd_e
#+CAPTION: Amplitude Spectral Density of the measured voltage corresponding to the geophone located on the floor and on the marble - E direction
#+RESULTS: fig:floor_marble_psd_e
[[file:figs/floor_marble_psd_e.png]]
** Compute the transfer function from floor motion to ground motion
We now compute the transfer function from the floor motion to the granite motion.
The result is shown on figure [[fig:tf_granite]].
#+begin_src matlab :results none
[TZ, f] = tfestimate(m_z(:, 1), -m_z(:, 2), win, [], [], Fs);
[TN, ~] = tfestimate(m_n(:, 1), -m_n(:, 2), win, [], [], Fs);
[TE, ~] = tfestimate(m_e(:, 1), -m_e(:, 2), win, [], [], Fs);
#+end_src
#+begin_src matlab :results none :exports none
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(TZ), 'DisplayName', 'Z');
plot(f, abs(TN), 'DisplayName', 'N');
plot(f, abs(TE), 'DisplayName', 'E');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
legend('Location', 'southwest');
ax2 = subplot(2, 1, 2);
hold on;
plot(f, mod(180+180/pi*phase(TZ), 360)-180);
plot(f, mod(180+180/pi*phase(TN), 360)-180);
plot(f, mod(180+180/pi*phase(TE), 360)-180);
hold off;
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
linkaxes([ax1,ax2],'x');
xlim([10, 100]);
#+end_src
#+NAME: fig:tf_granite
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/tf_granite.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<>
#+end_src
#+NAME: fig:tf_granite
#+CAPTION: Transfer function from floor motion to granite motion
#+RESULTS: fig:tf_granite
[[file:figs/tf_granite.png]]
** Conclusion
#+begin_important
- We see resonance of the granite at 33Hz in the horizontal directions
- We see two resonances for the z direction: at 60Hz and 75Hz
#+end_important