#+TITLE: Measurement Analysis :drawer: #+STARTUP: overview #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+LATEX_CLASS: cleanreport #+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted] #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :end: [[../index.org][Back to main page]]. * Importation of the data #+begin_src matlab :exports none :results silent <> #+end_src First, load all the measurement files: #+begin_src matlab :exports code :results silent meas = {}; meas{1} = load('./mat/Measurement1.mat'); meas{2} = load('./mat/Measurement2.mat'); meas{3} = load('./mat/Measurement3.mat'); meas{4} = load('./mat/Measurement4.mat'); meas{5} = load('./mat/Measurement5.mat'); #+end_src Change the track name for measurements 3 and 4. #+begin_src matlab :exports code :results silent meas{3}.Track1_Name = 'Input 1: Hexa Z'; meas{4}.Track1_Name = 'Input 1: Hexa Z'; #+end_src For the measurements 1 to 4, the measurement channels are shown table [[tab:meas_14]]. #+begin_src matlab :exports results :results table :post addhdr(*this*) table_string = sprintf(' | Channel 1 | Channel 2 | Channel 3 \n'); for i = 1:4 table_string = [table_string, sprintf('Meas. %i | %s | %s | %s \n', i, meas{i}.Track1_Name, meas{i}.Track2_Name, meas{i}.Track3_Name)]; end ans = table_string #+end_src #+NAME: tab:meas_14 #+CAPTION: Channels for measurements 1 to 4 #+RESULTS: | | Channel 1 | Channel 2 | Channel 3 | |---------+------------------+------------------+---------------| | Meas. 1 | Input 1: tilt1 Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 2 | Input 1: tilt1 Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 3 | Input 1: Hexa Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 4 | Input 1: Hexa Z | Input 2: tilt2 Z | Input 3: Ty Y | For the measurement 5, the channels are shown table [[tab:meas_5]]. #+begin_src matlab :exports results :results table :post addhdr(*this*) table_string = sprintf(' | Channel 1 | Channel 2 | Channel 3 | Channel 4 \n'); i = 5 table_string = [table_string, sprintf('Meas. %i | %s | %s | %s | %s \n', i, meas{i}.Track1_Name, meas{i}.Track2_Name, meas{i}.Track3_Name, meas{i}.Track4_Name)]; ans = table_string #+end_src #+NAME: tab:meas_5 #+CAPTION: Channels for measurement 5 #+RESULTS: | | Channel 1 | Channel 2 | Channel 3 | Channel 4 | |---------+------------------+-------------------+------------------+-------------------| | Meas. 5 | Input 1: Floor Z | Input 2: Marble Z | Input 3: Floor Y | Input 4: Marble Y | When using two geophone sensors on the same tilt stage (measurements 1 and 2), we post-process the data to obtain the z displacement and the rotation of the tilt stage: #+begin_src matlab :results silent meas1_z = (meas{1}.Track1+meas{1}.Track2)/2; meas1_tilt = (meas{1}.Track1-meas{1}.Track2)/2; meas{1}.Track1 = meas1_z; meas{1}.Track1_Y_Magnitude = 'Meter / second'; meas{1}.Track1_Name = 'Ry Z'; meas{1}.Track2 = meas1_tilt; meas{1}.Track2_Y_Magnitude = 'Rad / second'; meas{1}.Track2_Name = 'Ry Tilt'; meas2_z = (meas{2}.Track1+meas{2}.Track2)/2; meas2_tilt = (meas{2}.Track1-meas{2}.Track2)/2; meas{2}.Track1 = meas2_z; meas{2}.Track1_Y_Magnitude = 'Meter / second'; meas{2}.Track1_Name = 'Ry Z'; meas{2}.Track2 = meas2_tilt; meas{2}.Track2_Y_Magnitude = 'Rad / second'; meas{2}.Track2_Name = 'Ry Tilt'; #+end_src * Variables for analysis We define the sampling frequency and the time vectors for the plots. #+begin_src matlab :exports code :results silent Fs = 256; % [Hz] dt = 1/(Fs); t1 = dt*[1:length(meas{1}.Track1)]; t2 = dt*[1:length(meas{2}.Track1)]; t3 = dt*[1:length(meas{3}.Track1)]; t4 = dt*[1:length(meas{4}.Track1)]; t5 = dt*[1:length(meas{5}.Track1)]; #+end_src For the frequency analysis, we define the frequency limits for the plot. #+begin_src matlab :exports code :results silent fmin = 1; % [Hz] fmax = 100; % [Hz] #+end_src Then we define the windows that will be used to average the results. #+begin_src matlab :exports code :results silent psd_window = hanning(2*fmin/dt); #+end_src * Measurement 1 - Effect of Ty stage The configuration for this measurement is shown table [[tab:conf_meas1]]. #+CAPTION: Stages configuration - Measurement 1 #+NAME: tab:conf_meas1 | Time | 0-309 | 309-end | |------+-------+---------| | Ty | OFF | ON | We then plot the measurements in time domain (figure [[fig:meas1]]). #+begin_important We observe strange behavior when the Ty stage is turned on. How can we explain that? #+end_important #+begin_src matlab :exports none :results silent figure; hold on; plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track1(ceil(300/dt):ceil(340/dt))); plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track2(ceil(300/dt):ceil(340/dt))); plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track3(ceil(300/dt):ceil(340/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{1}.Track1_Name, meas{1}.Track2_Name, meas{1}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas1 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1 #+CAPTION: Time domain - measurement 1 #+RESULTS: fig:meas1 [[file:figs/meas1.png]] To understand what is going on, instead of looking at the velocity, we can look at the displacement by integrating the data. The displacement is computed by integrating the velocity using =cumtrapz= function. #+begin_src matlab :exports code :results silent tdisp = t1(ceil(300/dt):ceil(340/dt)); xdisp = cumtrapz(tdisp, meas{1}.Track3(ceil(300/dt):ceil(340/dt))); #+end_src Then we plot the position with respect to time (figure [[fig:meas1_disp]]). #+begin_src matlab :exports none :results silent figure; hold on; plot(tdisp, xdisp); hold off; xlabel('Time [s]'); ylabel('Displacement [m]'); #+end_src #+NAME: fig:meas1_disp #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_disp.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_disp #+CAPTION: Y displacement of the Ty stage #+RESULTS: fig:meas1_disp [[file:figs/meas1_disp.png]] We when compute the power spectral density of each measurement before and after turning on the stage. #+begin_src matlab :exports code :results silent [pxx111, f111] = pwelch(meas{1}.Track1(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx112, f112] = pwelch(meas{1}.Track1(ceil(350/dt):end), psd_window, [], [], Fs); [pxx121, f121] = pwelch(meas{1}.Track2(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx122, f122] = pwelch(meas{1}.Track2(ceil(350/dt):end), psd_window, [], [], Fs); [pxx131, f131] = pwelch(meas{1}.Track3(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx132, f132] = pwelch(meas{1}.Track3(ceil(350/dt):end), psd_window, [], [], Fs); #+end_src We finally plot the power spectral density of each track (figures [[fig:meas1_ry_z_psd]], [[fig:meas1_ry_tilt_psd]], [[fig:meas1_ty_y_psd]]). #+begin_src matlab :exports none :results silent figure; hold on; plot(f111, sqrt(pxx111)); plot(f112, sqrt(pxx112)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track1_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ry_z_psd #+CAPTION: PSD of the Z velocity of Ry stage - measurement 1 #+RESULTS: fig:meas1_ry_z_psd [[file:figs/meas1_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f121, sqrt(pxx121)); plot(f122, sqrt(pxx122)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$rad/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track2_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ry_tilt_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ry_tilt_psd.png" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ry_tilt_psd #+CAPTION: PSD of the Rotation of Ry Stage - measurement 1 #+RESULTS: fig:meas1_ry_tilt_psd [[file:figs/meas1_ry_tilt_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f131, sqrt(pxx131)); plot(f132, sqrt(pxx132)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track3_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 1 #+RESULTS: fig:meas1_ty_y_psd [[file:figs/meas1_ty_y_psd.png]] #+begin_important Turning on the Y-translation stage increases the velocity of the Ty stage in the Y direction and the rotation motion of the tilt stage: - at 20Hz - at 40Hz - between 80Hz and 90Hz It does not seems to have any effect on the Z motion of the tilt stage. #+end_important * Measurement 2 - Effect of Ry stage The tilt stage is turned ON at around 326 seconds (table [[tab:conf_meas2]]). #+CAPTION: Stages configuration - Measurement 2 #+NAME: tab:conf_meas2 | Time | 0-326 | 326-end | |------+-------+---------| | Tilt | OFF | ON | We plot the time domain (figure [[fig:meas2]]) and we don't observe anything special in the time domain. #+begin_src matlab :exports results :results silent figure; hold on; plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track1(ceil(300/dt):ceil(350/dt))); plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track3(ceil(300/dt):ceil(350/dt))); plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track2(ceil(300/dt):ceil(350/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{2}.Track1_Name, meas{2}.Track2_Name, meas{2}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas2 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2 #+CAPTION: Time domain - measurement 2 #+RESULTS: fig:meas2 [[file:figs/meas2.png]] We compute the PSD of each track and we plot them (figures [[fig:meas2_ry_z_psd]], [[fig:meas2_ry_tilt_psd]] and [[fig:meas2_ty_y_psd]] ). #+begin_src matlab :exports code :results silent [pxx211, f211] = pwelch(meas{2}.Track1(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx212, f212] = pwelch(meas{2}.Track1(ceil(326/dt):end), psd_window, [], [], Fs); [pxx221, f221] = pwelch(meas{2}.Track2(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx222, f222] = pwelch(meas{2}.Track2(ceil(326/dt):end), psd_window, [], [], Fs); [pxx231, f231] = pwelch(meas{2}.Track3(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx232, f232] = pwelch(meas{2}.Track3(ceil(326/dt):end), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f211, sqrt(pxx211)); plot(f212, sqrt(pxx212)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{2}.Track1_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ry_z_psd #+CAPTION: PSD of the Z velocity of Ry Stage - measurement 2 #+RESULTS: fig:meas2_ry_z_psd [[file:figs/meas2_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f221, sqrt(pxx221)); plot(f222, sqrt(pxx222)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$rad/s/\sqrt(Hz)$]'); title(sprintf('%s', meas{2}.Track2_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ry_tilt_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ry_tilt_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ry_tilt_psd #+CAPTION: PSD of the Rotation motion of Ry Stage - measurement 2 #+RESULTS: fig:meas2_ry_tilt_psd [[file:figs/meas2_ry_tilt_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f231, sqrt(pxx231)); plot(f232, sqrt(pxx232)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{2}.Track3_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 2 #+RESULTS: fig:meas2_ty_y_psd [[file:figs/meas2_ty_y_psd.png]] #+begin_important We observe no noticeable difference when the Tilt-stage is turned ON expect a small decrease of the Z motion of the tilt stage around 10Hz. #+end_important * Measurement 3 - Effect of the Hexapod The hexapod is turned off after 406 seconds (table [[tab:conf_meas3]]). #+CAPTION: Stages configuration - Measurement 3 #+NAME: tab:conf_meas3 | Time | 0-406 | 406-end | |------+-------+---------| | Tilt | ON | ON | | Hexa | ON | OFF | The time domain result is shown figure [[fig:meas3]]. #+begin_src matlab :exports results :results silent figure; hold on; plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track1(ceil(380/dt):ceil(420/dt))); plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track2(ceil(380/dt):ceil(420/dt))); plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track3(ceil(380/dt):ceil(420/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{3}.Track1_Name, meas{3}.Track2_Name, meas{3}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas3 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3.pdf" :var figsize="wide-noral" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3 #+CAPTION: Time domain - measurement 3 #+RESULTS: fig:meas3 [[file:figs/meas3.png]] We then compute the PSD of each track before and after turning off the hexapod and plot the results in the figures [[fig:meas3_hexa_z_psd]], [[fig:meas3_ry_z_psd]] and [[fig:meas3_ty_y_psd]]. #+begin_src matlab :exports code :results silent [pxx311, f311] = pwelch(meas{3}.Track1(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx312, f312] = pwelch(meas{3}.Track1(ceil(420/dt):end), psd_window, [], [], Fs); [pxx321, f321] = pwelch(meas{3}.Track2(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx322, f322] = pwelch(meas{3}.Track2(ceil(420/dt):end), psd_window, [], [], Fs); [pxx331, f331] = pwelch(meas{3}.Track3(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx332, f332] = pwelch(meas{3}.Track3(ceil(420/dt):end), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f311, sqrt(pxx311)); plot(f312, sqrt(pxx312)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track1_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_hexa_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_hexa_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_hexa_z_psd #+CAPTION: PSD of the Z velocity of the Hexapod - measurement 3 #+RESULTS: fig:meas3_hexa_z_psd [[file:figs/meas3_hexa_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f321, sqrt(pxx321)); plot(f322, sqrt(pxx322)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track2_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_ry_z_psd #+CAPTION: PSD of the Z velocity of the Ry stage - measurement 3 #+RESULTS: fig:meas3_ry_z_psd [[file:figs/meas3_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f331, sqrt(pxx331)); plot(f332, sqrt(pxx332)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track3_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 3 #+RESULTS: fig:meas3_ty_y_psd [[file:figs/meas3_ty_y_psd.png]] #+begin_important Turning ON induces some motion on the hexapod in the z direction (figure [[fig:meas3_hexa_z_psd]]), on the tilt stage in the z direction (figure [[fig:meas3_ry_z_psd]]) and on the y motion of the Ty stage (figure [[fig:meas3_ty_y_psd]]): - at 17Hz - at 34Hz #+end_important * Measurement 4 - Effect of the Splip-Ring and Spindle The slip ring is turned on at 300s, then the spindle is turned on at 620s (table [[tab:conf_meas4]]). The time domain signals are shown figure [[fig:meas4]]. #+CAPTION: Stages configuration - Measurement 4 #+NAME: tab:conf_meas4 | Time | 0-300 | 300-620 | 620-end | |----------+-------+---------+---------| | SlipRing | OFF | ON | ON | | Hexa | OFF | OFF | OFF | | Spindle | OFF | OFF | ON | #+begin_src matlab :exports results :results silent figure; hold on; plot(t4, meas{4}.Track1); plot(t4, meas{4}.Track2); plot(t4, meas{4}.Track3); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{4}.Track1_Name, meas{4}.Track2_Name, meas{4}.Track3_Name}, 'Location', 'southwest') #+end_src #+NAME: fig:meas4 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4 #+CAPTION: Time domain - measurement 4 #+RESULTS: fig:meas4 [[file:figs/meas4.png]] The PSD of each track are computed using the code below. #+begin_src matlab :exports none :results silent [pxx411, f411] = pwelch(meas{4}.Track1(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx412, f412] = pwelch(meas{4}.Track1(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx413, f413] = pwelch(meas{4}.Track1(ceil(640/dt):end), psd_window, [], [], Fs); [pxx421, f421] = pwelch(meas{4}.Track2(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx422, f422] = pwelch(meas{4}.Track2(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx423, f423] = pwelch(meas{4}.Track2(ceil(640/dt):end), psd_window, [], [], Fs); [pxx431, f431] = pwelch(meas{4}.Track3(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx432, f432] = pwelch(meas{4}.Track3(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx433, f433] = pwelch(meas{4}.Track3(ceil(640/dt):end), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f411, sqrt(pxx411)); plot(f412, sqrt(pxx412)); plot(f413, sqrt(pxx413)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track1_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_hexa_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_hexa_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_hexa_z_psd #+CAPTION: PSD of the Z velocity of the Hexapod - measurement 4 #+RESULTS: fig:meas4_hexa_z_psd [[file:figs/meas4_hexa_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f421, sqrt(pxx421)); plot(f422, sqrt(pxx422)); plot(f423, sqrt(pxx423)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track2_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_ry_z_psd #+CAPTION: PSD of the Ry rotation in the Y direction - measurement 4 #+RESULTS: fig:meas4_ry_z_psd [[file:figs/meas4_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f431, sqrt(pxx431)); plot(f432, sqrt(pxx432)); plot(f433, sqrt(pxx433)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track3_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 4 #+RESULTS: fig:meas4_ty_y_psd [[file:figs/meas4_ty_y_psd.png]] #+begin_important Turning ON the splipring seems to not add motions on the stages measured. It even seems to lower the motion of the Ty stage (figure [[fig:meas4_ty_y_psd]]): does that make any sense? Turning ON the spindle induces motions: - at 5Hz on each motion measured - at 22.5Hz on the Z motion of the Hexapod. Can this is due to some 50Hz? - at 62Hz on each motion measured #+end_important * Measurement 5 - Transmission from ground to marble This measurement just consists of measurement of Y-Z motion of the ground and the marble. The time domain signals are shown on figure [[fig:meas5]]. #+begin_src matlab :exports results :results silent figure; hold on; plot(t5, meas{5}.Track1); plot(t5, meas{5}.Track2); plot(t5, meas{5}.Track3); plot(t5, meas{5}.Track4); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{5}.Track1_Name, meas{5}.Track2_Name, meas{5}.Track3_Name, meas{5}.Track4_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas5 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5 #+CAPTION: Time domain - measurement 5 #+RESULTS: fig:meas5 [[file:figs/meas5.png]] We compute the PSD of each track and we plot the PSD of the Z motion for the ground and marble on figure [[fig:meas5_z_psd]] and for the Y motion on figure [[fig:meas5_y_psd]]. #+begin_src matlab :exports code :results silent [pxx51, f51] = pwelch(meas{5}.Track1(:), psd_window, [], [], Fs); [pxx52, f52] = pwelch(meas{5}.Track2(:), psd_window, [], [], Fs); [pxx53, f53] = pwelch(meas{5}.Track3(:), psd_window, [], [], Fs); [pxx54, f54] = pwelch(meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f51, sqrt(pxx51)); plot(f52, sqrt(pxx52)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); legend({meas{5}.Track1_Name, meas{5}.Track2_Name}, 'Location', 'northwest'); hold off; #+end_src #+NAME: fig:meas5_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_z_psd #+CAPTION: PSD of the ground and marble in the Z direction #+RESULTS: fig:meas5_z_psd [[file:figs/meas5_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f53, sqrt(pxx53)); plot(f54, sqrt(pxx54)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); legend({meas{5}.Track3_Name, meas{5}.Track4_Name}, 'Location', 'northwest'); hold off; #+end_src #+NAME: fig:meas5_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_y_psd #+CAPTION: PSD of the ground and marble in the Y direction #+RESULTS: fig:meas5_y_psd [[file:figs/meas5_y_psd.png]] Then, instead of looking at the Power Spectral Density, we can try to estimate the transfer function from a ground motion to the motion of the marble. The transfer functions are shown on figure [[fig:meas5_tf]] and the coherence on figure [[fig:meas5_coh]]. #+begin_src matlab :exports code :results silent [tfz, fz] = tfestimate(meas{5}.Track1(:), meas{5}.Track2(:), psd_window, [], [], Fs); [tfy, fy] = tfestimate(meas{5}.Track3(:), meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; ax1 = subaxis(2,1,1); hold on; plot(fz, abs(tfz)); plot(fy, abs(tfy)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude'); hold off; ax2 = subaxis(2,1,2); hold on; plot(fz, 180/pi*angle(tfz)); plot(fy, 180/pi*angle(tfy)); set(gca,'xscale','log'); yticks(-180:90:180); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([fmin, fmax]); legend({'Z direction', 'Y direction'}, 'Location', 'southwest') #+end_src #+NAME: fig:meas5_tf #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_tf.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_tf #+CAPTION: Transfer function estimation - measurement 5 #+RESULTS: fig:meas5_tf [[file:figs/meas5_tf.png]] #+begin_src matlab :exports code :results silent [cohz, fz] = mscohere(meas{5}.Track1(:), meas{5}.Track2(:), psd_window, [], [], Fs); [cohy, fy] = mscohere(meas{5}.Track3(:), meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(fz, cohz); plot(fy, cohy); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); xlim([fmin, fmax]); legend({'Z direction', 'Y direction'}, 'Location', 'southwest') #+end_src #+NAME: fig:meas5_coh #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_coh.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_coh #+CAPTION: Coherence - measurement 5 #+RESULTS: fig:meas5_coh [[file:figs/meas5_coh.png]] #+begin_important The marble seems to have a resonance at around 20Hz on the Y direction. But the coherence is not good above 20Hz, so it is difficult to estimate resonances. #+end_important