% Matlab Init :noexport:ignore: current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/'; %% Go to current Directory cd(current_dir); %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Initialize ans with org-babel ans = 0; % Load data % We load the data of the z axis of two geophones. load('mat/data_001.mat', 't', 'x1', 'x2'); dt = t(2) - t(1); % Time Domain Data figure; hold on; plot(t, x1); plot(t, x2); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); xlim([t(1), t(end)]); % #+NAME: fig:data_time_domain % #+CAPTION: Time domain Data % #+RESULTS: fig:data_time_domain % [[file:figs/data_time_domain.png]] figure; hold on; plot(t, x1); plot(t, x2); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); xlim([0 1]); % Computation of the ASD of the measured voltage % We first define the parameters for the frequency domain analysis. Fs = 1/dt; % [Hz] win = hanning(ceil(10*Fs)); % Then we compute the Power Spectral Density using =pwelch= function. [pxx1, f] = pwelch(x1, win, [], [], Fs); [pxx2, ~] = pwelch(x2, win, [], [], Fs); % And we plot the result on figure [[fig:asd_voltage]]. figure; hold on; plot(f, sqrt(pxx1)); plot(f, sqrt(pxx2)); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); % Scaling to take into account the sensibility of the geophone and the voltage amplifier % The Geophone used are L22. Their sensibility is shown on figure [[fig:geophone_sensibility]]. S0 = 88; % Sensitivity [V/(m/s)] f0 = 2; % Cut-off frequnecy [Hz] S = S0*(s/2/pi/f0)/(1+s/2/pi/f0); figure; bodeFig({S}, logspace(-1, 2, 1000)); ylabel('Amplitude $\left[\frac{V}{m/s}\right]$') % #+NAME: fig:geophone_sensibility % #+CAPTION: Sensibility of the Geophone % #+RESULTS: fig:geophone_sensibility % [[file:figs/geophone_sensibility.png]] % We also take into account the gain of the electronics which is here set to be $60dB$. G0_db = 60; % [dB] G0 = 10^(G0_db/20); % [abs] % We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the gain of the voltage amplifier to obtain the ASD of the voltage across the geophone. % We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$. scaling = 1./squeeze(abs(freqresp(G0*S, f, 'Hz'))); % Computation of the ASD of the velocity % The ASD of the measured velocity is shown on figure [[fig:psd_velocity]]. figure; hold on; plot(f, sqrt(pxx1).*scaling); plot(f, sqrt(pxx2).*scaling); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD of the measured Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); % #+NAME: fig:psd_velocity % #+CAPTION: Amplitude Spectral Density of the Velocity % #+RESULTS: fig:psd_velocity % [[file:figs/psd_velocity.png]] % We also plot the ASD in displacement (figure [[fig:asd_displacement]]); figure; hold on; plot(f, (sqrt(pxx1).*scaling)./(2*pi*f)); plot(f, (sqrt(pxx2).*scaling)./(2*pi*f)); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD of the displacement $\left[\frac{m}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); % Transfer function between the two geophones % We here compute the transfer function from one geophone to the other. % The result is shown on figure [[fig:tf_geophones]]. % We also compute the coherence between the two signals (figure [[fig:coh_geophones]]). [T12, ~] = tfestimate(x1, x2, win, [], [], Fs); figure; ax1 = subplot(2, 1, 1); plot(f, abs(T12)); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude'); ax2 = subplot(2, 1, 2); plot(f, mod(180+180/pi*phase(T12), 360)-180); set(gca, 'xscale', 'log'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); linkaxes([ax1,ax2],'x'); xlim([0.1, 500]); % #+NAME: fig:tf_geophones % #+CAPTION: Estimated transfer function between the two geophones % #+RESULTS: fig:tf_geophones % [[file:figs/tf_geophones.png]] [coh12, ~] = mscohere(x1, x2, win, [], [], Fs); figure; plot(f, coh12); set(gca, 'xscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Coherence'); ylim([0,1]); xlim([0.1, 500]); % Estimation of the sensor noise % The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen. % The coherence between signals $X$ and $Y$ is defined as follow % \[ \gamma^2_{XY}(\omega) = \frac{|G_{XY}(\omega)|^2}{|G_{X}(\omega)| |G_{Y}(\omega)|} \] % where $|G_X(\omega)|$ is the output Power Spectral Density (PSD) of signal $X$ and $|G_{XY}(\omega)|$ is the Cross Spectral Density (CSD) of signal $X$ and $Y$. % The PSD and CSD are defined as follow: % \begin{align} % |G_X(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} \left| X_k(\omega, T) \right|^2 \\ % |G_{XY}(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} [ X_k^*(\omega, T) ] [ Y_k(\omega, T) ] % \end{align} % where: % - $n_d$ is the number for records averaged % - $T$ is the length of each record % - $X_k(\omega, T)$ is the finite Fourier transform of the kth record % - $X_k^*(\omega, T)$ is its complex conjugate % The =mscohere= function is compared with this formula on Appendix (section [[sec:coherence]]), it is shown that it is identical. % Figure [[fig:huddle_test]] illustrate a block diagram model of the system used to determine the sensor noise of the geophone. % Two geophones are mounted side by side to ensure that they are exposed by the same motion input $U$. % Each sensor has noise $N$ and $M$. % #+NAME: fig:huddle_test % #+CAPTION: Huddle test block diagram % [[file:figs/huddle-test.png]] % We here assume that each sensor has the same magnitude of instrumental noise ($N = M$). % We also assume that $S_1 = S_2 = 1$. % We then obtain: % #+NAME: eq:coh_bis % \begin{equation} % \gamma_{XY}^2(\omega) = \frac{1}{1 + 2 \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right) + \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right)^2} % \end{equation} % Since the input signal $U$ and the instrumental noise $N$ are incoherent: % #+NAME: eq:incoherent_noise % \begin{equation} % |G_X(\omega)| = |G_N(\omega)| + |G_U(\omega)| % \end{equation} % From equations [[eq:coh_bis]] and [[eq:incoherent_noise]], we finally obtain % #+begin_important % #+NAME: eq:noise_psd % \begin{equation} % |G_N(\omega)| = |G_X(\omega)| \left( 1 - \sqrt{\gamma_{XY}^2(\omega)} \right) % \end{equation} % #+end_important % The instrumental noise is computed below. The result in V^2/Hz is shown on figure [[fig:intrumental_noise_V]]. pxxN = pxx1.*(1 - coh12); figure; hold on; plot(f, pxx1, '-'); plot(f, pxx2, '-'); plot(f, pxxN, 'k--'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD of the measured Voltage $\left[\frac{V^2}{Hz}\right]$'); xlim([0.1, 500]); % #+NAME: fig:intrumental_noise_V % #+CAPTION: Instrumental Noise and Measurement in $V^2/Hz$ % #+RESULTS: fig:intrumental_noise_V % [[file:figs/intrumental_noise_V.png]] % This is then further converted into velocity and compared with the ground velocity measurement. (figure [[fig:intrumental_noise_velocity]]) figure; hold on; plot(f, sqrt(pxx1).*scaling, '-'); plot(f, sqrt(pxx2).*scaling, '-'); plot(f, sqrt(pxxN).*scaling, 'k--'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD of the Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$'); xlim([0.1, 500]);