#+TITLE: Measurement Analysis #+SETUPFILE: ../config.org * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src * Measurement Description #+name: fig:setup_picture #+attr_html: :width 500px #+caption: Picture of the setup for the measurement [[file:./figs/setup_picture.png]] The sensor used are 3 L-4C geophones ([[file:../actuators-sensors/index.org::*L-4C][Documentation]]). Each motor are turn off and then on. The goal is to see what noise is injected in the system due to the regulation loop of each stage. * Importation of the data First, load all the measurement files: #+begin_src matlab :exports code :results silent meas = {}; meas{1} = load('./mat/Measurement1.mat'); meas{2} = load('./mat/Measurement2.mat'); meas{3} = load('./mat/Measurement3.mat'); meas{4} = load('./mat/Measurement4.mat'); meas{5} = load('./mat/Measurement5.mat'); #+end_src Change the track name for measurements 3 and 4. #+begin_src matlab :exports code :results silent meas{3}.Track1_Name = 'Input 1: Hexa Z'; meas{4}.Track1_Name = 'Input 1: Hexa Z'; #+end_src For the measurements 1 to 4, the measurement channels are shown table [[tab:meas_14]]. #+begin_src matlab :exports results :results table :post addhdr(*this*) table_string = sprintf(' | Channel 1 | Channel 2 | Channel 3 \n'); for i = 1:4 table_string = [table_string, sprintf('Meas. %i | %s | %s | %s \n', i, meas{i}.Track1_Name, meas{i}.Track2_Name, meas{i}.Track3_Name)]; end ans = table_string #+end_src #+NAME: tab:meas_14 #+CAPTION: Channels for measurements 1 to 4 #+RESULTS: | | Channel 1 | Channel 2 | Channel 3 | |---------+------------------+------------------+---------------| | Meas. 1 | Input 1: tilt1 Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 2 | Input 1: tilt1 Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 3 | Input 1: Hexa Z | Input 2: tilt2 Z | Input 3: Ty Y | | Meas. 4 | Input 1: Hexa Z | Input 2: tilt2 Z | Input 3: Ty Y | For the measurement 5, the channels are shown table [[tab:meas_5]]. #+begin_src matlab :exports results :results table :post addhdr(*this*) table_string = sprintf(' | Channel 1 | Channel 2 | Channel 3 | Channel 4 \n'); i = 5 table_string = [table_string, sprintf('Meas. %i | %s | %s | %s | %s \n', i, meas{i}.Track1_Name, meas{i}.Track2_Name, meas{i}.Track3_Name, meas{i}.Track4_Name)]; ans = table_string #+end_src #+NAME: tab:meas_5 #+CAPTION: Channels for measurement 5 #+RESULTS: | | Channel 1 | Channel 2 | Channel 3 | Channel 4 | |---------+------------------+-------------------+------------------+-------------------| | Meas. 5 | Input 1: Floor Z | Input 2: Marble Z | Input 3: Floor Y | Input 4: Marble Y | * Variables for analysis We define the sampling frequency and the time vectors for the plots. #+begin_src matlab :exports code :results silent Fs = 256; % [Hz] dt = 1/(Fs); t1 = dt*[0:length(meas{1}.Track1)-1]; t2 = dt*[0:length(meas{2}.Track1)-1]; t3 = dt*[0:length(meas{3}.Track1)-1]; t4 = dt*[0:length(meas{4}.Track1)-1]; t5 = dt*[0:length(meas{5}.Track1)-1]; #+end_src For the frequency analysis, we define the frequency limits for the plot. #+begin_src matlab :exports code :results silent fmin = 1; % [Hz] fmax = 100; % [Hz] #+end_src Then we define the windows that will be used to average the results. #+begin_src matlab :exports code :results silent psd_window = hanning(2*fmin/dt); #+end_src * Coherence between the two vertical geophones on the Tilt Stage We first compute the coherence between the two geophones located on the tilt stage. The result is shown on figure [[fig:coherence_vertical_tilt_sensors]]. #+begin_src matlab :results none [coh, f] = mscohere(meas{1}.Track1(:), meas{1}.Track2(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :results none :exports none figure; plot(f, coh); set(gca, 'xscale', 'log'); ylim([0, 1]); xlabel('Frequency [Hz]'); ylabel('Coherence'); #+end_src #+NAME: fig:coherence_vertical_tilt_sensors #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/coherence_vertical_tilt_sensors.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:coherence_vertical_tilt_sensors #+CAPTION: Coherence between the two vertical sensors positionned on the Tilt Stage #+RESULTS: fig:coherence_vertical_tilt_sensors [[file:figs/coherence_vertical_tilt_sensors.png]] We then compute the transfer function from one sensor to the other (figure [[fig:tf_vertical_tilt_sensors]]). #+begin_src matlab :results none [tf23, f] = tfestimate(meas{1}.Track1(:), meas{1}.Track2(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :results none :exports none figure; ax1 = subaxis(2,1,1); plot(f, abs(tf23)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [V/(m/s)]'); ax2 = subaxis(2,1,2); plot(f, 180/pi*angle(tf23)); set(gca,'xscale','log'); yticks(-180:90:180); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); linkaxes([ax1,ax2],'x'); #+end_src #+NAME: fig:tf_vertical_tilt_sensors #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/tf_vertical_tilt_sensors.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:tf_vertical_tilt_sensors #+CAPTION: Transfer function from one vertical geophone on the tilt stage to the other vertical geophone on the tilt stage #+RESULTS: fig:tf_vertical_tilt_sensors [[file:figs/tf_vertical_tilt_sensors.png]] Even though the coherence is not very good, we observe no resonance between the two sensors. * Data Post Processing When using two geophone sensors on the same tilt stage (measurements 1 and 2), we post-process the data to obtain the z displacement and the rotation of the tilt stage: #+begin_src matlab :results silent meas1_z = (meas{1}.Track1+meas{1}.Track2)/2; meas1_tilt = (meas{1}.Track1-meas{1}.Track2)/2; meas{1}.Track1 = meas1_z; meas{1}.Track1_Y_Magnitude = 'Meter / second'; meas{1}.Track1_Name = 'Ry Z'; meas{1}.Track2 = meas1_tilt; meas{1}.Track2_Y_Magnitude = 'Rad / second'; meas{1}.Track2_Name = 'Ry Tilt'; meas2_z = (meas{2}.Track1+meas{2}.Track2)/2; meas2_tilt = (meas{2}.Track1-meas{2}.Track2)/2; meas{2}.Track1 = meas2_z; meas{2}.Track1_Y_Magnitude = 'Meter / second'; meas{2}.Track1_Name = 'Ry Z'; meas{2}.Track2 = meas2_tilt; meas{2}.Track2_Y_Magnitude = 'Rad / second'; meas{2}.Track2_Name = 'Ry Tilt'; #+end_src * Normalization Parameters of the geophone are defined below. The transfer function from geophone velocity to measured voltage is shown on figure [[fig:L4C_bode_plot]]. Measurements will be normalized by the inverse of this transfer function in order to go from voltage measurement to velocity measurement. #+begin_src matlab :results none L4C_w0 = 2*pi; % [rad/s] L4C_ksi = 0.28; L4C_G0 = 276.8; % [V/(m/s)] L4C_G = L4C_G0*(s/L4C_w0)^2/((s/L4C_w0)^2 + 2*L4C_ksi*(s/L4C_w0) + 1); #+end_src #+begin_src matlab :results none :exports none freqs = logspace(-2, 2, 1000); figure; ax1 = subaxis(2,1,1); plot(freqs, abs(squeeze(freqresp(L4C_G, freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [V/(m/s)]'); ax2 = subaxis(2,1,2); plot(freqs, 180/pi*angle(squeeze(freqresp(L4C_G, freqs, 'Hz')))); set(gca,'xscale','log'); yticks(-180:90:180); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); linkaxes([ax1,ax2],'x'); #+end_src #+NAME: fig:L4C_bode_plot #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/L4C_bode_plot.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:L4C_bode_plot #+CAPTION: Bode plot of the L4C Geophone #+RESULTS: fig:L4C_bode_plot [[file:figs/L4C_bode_plot.png]] #+begin_src matlab :results none :exports code meas{1}.Track1 = (meas{1}.Track1)./276.8; meas{1}.Track2 = (meas{1}.Track2)./276.8; meas{1}.Track3 = (meas{1}.Track3)./276.8; meas{2}.Track1 = (meas{2}.Track1)./276.8; meas{2}.Track2 = (meas{2}.Track2)./276.8; meas{2}.Track3 = (meas{2}.Track3)./276.8; meas{3}.Track1 = (meas{3}.Track1)./276.8; meas{3}.Track2 = (meas{3}.Track2)./276.8; meas{3}.Track3 = (meas{3}.Track3)./276.8; meas{4}.Track1 = (meas{4}.Track1)./276.8; meas{4}.Track2 = (meas{4}.Track2)./276.8; meas{4}.Track3 = (meas{4}.Track3)./276.8; meas{5}.Track1 = (meas{5}.Track1)./276.8; meas{5}.Track2 = (meas{5}.Track2)./276.8; meas{5}.Track3 = (meas{5}.Track3)./276.8; meas{5}.Track4 = (meas{5}.Track4)./276.8; #+end_src #+begin_src matlab :results none meas{1}.Track1_norm = lsim(inv(L4C_G), meas{1}.Track1, t1); meas{1}.Track2_norm = lsim(inv(L4C_G), meas{1}.Track2, t1); meas{1}.Track3_norm = lsim(inv(L4C_G), meas{1}.Track3, t1); meas{2}.Track1_norm = lsim(inv(L4C_G), meas{2}.Track1, t2); meas{2}.Track2_norm = lsim(inv(L4C_G), meas{2}.Track2, t2); meas{2}.Track3_norm = lsim(inv(L4C_G), meas{2}.Track3, t2); meas{3}.Track1_norm = lsim(inv(L4C_G), meas{3}.Track1, t3); meas{3}.Track2_norm = lsim(inv(L4C_G), meas{3}.Track2, t3); meas{3}.Track3_norm = lsim(inv(L4C_G), meas{3}.Track3, t3); meas{4}.Track1_norm = lsim(inv(L4C_G), meas{4}.Track1, t4); meas{4}.Track2_norm = lsim(inv(L4C_G), meas{4}.Track2, t4); meas{4}.Track3_norm = lsim(inv(L4C_G), meas{4}.Track3, t4); meas{5}.Track1_norm = lsim(inv(L4C_G), meas{5}.Track1, t5); meas{5}.Track2_norm = lsim(inv(L4C_G), meas{5}.Track2, t5); meas{5}.Track3_norm = lsim(inv(L4C_G), meas{5}.Track3, t5); meas{5}.Track4_norm = lsim(inv(L4C_G), meas{5}.Track4, t5); #+end_src * Measurement 1 - Effect of Ty stage The configuration for this measurement is shown table [[tab:conf_meas1]]. #+CAPTION: Stages configuration - Measurement 1 #+NAME: tab:conf_meas1 | Time | 0-309 | 309-end | |----------+-------+---------| | Ty | OFF | *ON* | | Ry | OFF | OFF | | SlipRing | OFF | OFF | | Spindle | OFF | OFF | | Hexa | OFF | OFF | We then plot the measurements in time domain (figure [[fig:meas1]]). #+begin_important We observe strange behavior when the Ty stage is turned on. How can we explain that? #+end_important #+begin_src matlab :exports none :results silent figure; hold on; plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track1(ceil(300/dt):ceil(340/dt))); plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track2(ceil(300/dt):ceil(340/dt))); plot(t1(ceil(300/dt):ceil(340/dt)), meas{1}.Track3(ceil(300/dt):ceil(340/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{1}.Track1_Name, meas{1}.Track2_Name, meas{1}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas1 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1 #+CAPTION: Time domain - measurement 1 #+RESULTS: fig:meas1 [[file:figs/meas1.png]] To understand what is going on, instead of looking at the velocity, we can look at the displacement by integrating the data. The displacement is computed by integrating the velocity using =cumtrapz= function. Then we plot the position with respect to time (figure [[fig:meas1_disp]]). #+begin_src matlab :exports none :results silent figure; hold on; plot(t1, cumtrapz(t1, meas{1}.Track3)); hold off; xlim([300, 340]); xlabel('Time [s]'); ylabel('Displacement [m]'); #+end_src #+NAME: fig:meas1_disp #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_disp.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_disp #+CAPTION: Y displacement of the Ty stage #+RESULTS: fig:meas1_disp [[file:figs/meas1_disp.png]] We when compute the power spectral density of each measurement before and after turning on the stage. #+begin_src matlab :exports code :results silent [pxx111, f11] = pwelch(meas{1}.Track1(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx112, f12] = pwelch(meas{1}.Track1(ceil(350/dt):end), psd_window, [], [], Fs); [pxx121, ~] = pwelch(meas{1}.Track2(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx122, ~] = pwelch(meas{1}.Track2(ceil(350/dt):end), psd_window, [], [], Fs); [pxx131, ~] = pwelch(meas{1}.Track3(1:ceil(300/dt)), psd_window, [], [], Fs); [pxx132, ~] = pwelch(meas{1}.Track3(ceil(350/dt):end), psd_window, [], [], Fs); #+end_src We finally plot the power spectral density of each track (figures [[fig:meas1_ry_z_psd]], [[fig:meas1_ry_tilt_psd]], [[fig:meas1_ty_y_psd]]). #+begin_src matlab :exports none :results silent figure; hold on; plot(f11, sqrt(pxx111)./abs(squeeze(freqresp(L4C_G, f11, 'Hz')))); plot(f12, sqrt(pxx112)./abs(squeeze(freqresp(L4C_G, f12, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track1_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ry_z_psd #+CAPTION: PSD of the Z velocity of Ry stage - measurement 1 #+RESULTS: fig:meas1_ry_z_psd [[file:figs/meas1_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f11, sqrt(pxx121)./abs(squeeze(freqresp(L4C_G, f11, 'Hz')))); plot(f12, sqrt(pxx122)./abs(squeeze(freqresp(L4C_G, f12, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$rad/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track2_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ry_tilt_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ry_tilt_psd.png" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ry_tilt_psd #+CAPTION: PSD of the Rotation of Ry Stage - measurement 1 #+RESULTS: fig:meas1_ry_tilt_psd [[file:figs/meas1_ry_tilt_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f11, sqrt(pxx131)./abs(squeeze(freqresp(L4C_G, f11, 'Hz')))); plot(f12, sqrt(pxx132)./abs(squeeze(freqresp(L4C_G, f12, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{1}.Track3_Name)); legend({'0-300', '350-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas1_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas1_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas1_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 1 #+RESULTS: fig:meas1_ty_y_psd [[file:figs/meas1_ty_y_psd.png]] #+begin_important Turning on the Y-translation stage increases the velocity of the Ty stage in the Y direction and the rotation motion of the tilt stage: - at 20Hz - at 40Hz - between 80Hz and 90Hz It does not seems to have any effect on the Z motion of the tilt stage. #+end_important * Measurement 2 - Effect of Ry stage The tilt stage is turned ON at around 326 seconds (table [[tab:conf_meas2]]). #+CAPTION: Stages configuration - Measurement 2 #+NAME: tab:conf_meas2 | Time | 0-326 | 326-end | |----------+-------+---------| | Ty | OFF | OFF | | Ry | OFF | *ON* | | SlipRing | OFF | OFF | | Spindle | OFF | OFF | | Hexa | OFF | OFF | We plot the time domain (figure [[fig:meas2]]) and we don't observe anything special in the time domain. #+begin_src matlab :exports results :results silent figure; hold on; plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track1(ceil(300/dt):ceil(350/dt))); plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track3(ceil(300/dt):ceil(350/dt))); plot(t2(ceil(300/dt):ceil(350/dt)), meas{2}.Track2(ceil(300/dt):ceil(350/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{2}.Track1_Name, meas{2}.Track2_Name, meas{2}.Track3_Name}, 'Location', 'northeast') xlim([300, 350]); #+end_src #+NAME: fig:meas2 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2 #+CAPTION: Time domain - measurement 2 #+RESULTS: fig:meas2 [[file:figs/meas2.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(t2, cumtrapz(t2, meas{2}.Track1)); plot(t2, cumtrapz(t2, meas{2}.Track2)); plot(t2, cumtrapz(t2, meas{2}.Track3)); hold off; xlim([300, 350]); xlabel('Time [s]'); ylabel('Displacement [m]'); legend({meas{2}.Track1_Name, meas{2}.Track2_Name, meas{2}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas2_disp #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_disp.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_disp #+CAPTION: Time domain - measurement 2 #+RESULTS: fig:meas2_disp [[file:figs/meas2_disp.png]] We compute the PSD of each track and we plot them (figures [[fig:meas2_ry_z_psd]], [[fig:meas2_ry_tilt_psd]] and [[fig:meas2_ty_y_psd]] ). #+begin_src matlab :exports code :results silent [pxx211, f21] = pwelch(meas{2}.Track1(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx212, f22] = pwelch(meas{2}.Track1(ceil(326/dt):end), psd_window, [], [], Fs); [pxx221, ~] = pwelch(meas{2}.Track2(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx222, ~] = pwelch(meas{2}.Track2(ceil(326/dt):end), psd_window, [], [], Fs); [pxx231, ~] = pwelch(meas{2}.Track3(1:ceil(326/dt)), psd_window, [], [], Fs); [pxx232, ~] = pwelch(meas{2}.Track3(ceil(326/dt):end), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f21, sqrt(pxx211)./abs(squeeze(freqresp(L4C_G, f21, 'Hz')))); plot(f22, sqrt(pxx212)./abs(squeeze(freqresp(L4C_G, f22, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{2}.Track1_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ry_z_psd #+CAPTION: PSD of the Z velocity of Ry Stage - measurement 2 #+RESULTS: fig:meas2_ry_z_psd [[file:figs/meas2_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f21, sqrt(pxx221)./abs(squeeze(freqresp(L4C_G, f21, 'Hz')))); plot(f22, sqrt(pxx222)./abs(squeeze(freqresp(L4C_G, f22, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$rad/s/\sqrt(Hz)$]'); title(sprintf('%s', meas{2}.Track2_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ry_tilt_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ry_tilt_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ry_tilt_psd #+CAPTION: PSD of the Rotation motion of Ry Stage - measurement 2 #+RESULTS: fig:meas2_ry_tilt_psd [[file:figs/meas2_ry_tilt_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f21, sqrt(pxx231)./abs(squeeze(freqresp(L4C_G, f21, 'Hz')))); plot(f22, sqrt(pxx232)./abs(squeeze(freqresp(L4C_G, f22, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{2}.Track3_Name)); legend({'0-326', '326-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas2_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas2_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas2_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 2 #+RESULTS: fig:meas2_ty_y_psd [[file:figs/meas2_ty_y_psd.png]] #+begin_important We observe no noticeable difference when the Tilt-stage is turned ON expect a small decrease of the Z motion of the tilt stage around 10Hz. #+end_important * Measurement 3 - Effect of the Hexapod The hexapod is turned off after 406 seconds (table [[tab:conf_meas3]]). #+CAPTION: Stages configuration - Measurement 3 #+NAME: tab:conf_meas3 | Time | 0-406 | 406-end | |----------+-------+---------| | Ty | OFF | OFF | | Ry | *ON* | *ON* | | SlipRing | OFF | OFF | | Spindle | OFF | OFF | | Hexa | *ON* | OFF | The time domain result is shown figure [[fig:meas3]]. #+begin_src matlab :exports results :results silent figure; hold on; plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track1(ceil(380/dt):ceil(420/dt))); plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track2(ceil(380/dt):ceil(420/dt))); plot(t3(ceil(380/dt):ceil(420/dt)), meas{3}.Track3(ceil(380/dt):ceil(420/dt))); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{3}.Track1_Name, meas{3}.Track2_Name, meas{3}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas3 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3.pdf" :var figsize="wide-noral" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3 #+CAPTION: Time domain - measurement 3 #+RESULTS: fig:meas3 [[file:figs/meas3.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(t3, cumtrapz(t3, meas{3}.Track1)); plot(t3, cumtrapz(t3, meas{3}.Track2)); plot(t3, cumtrapz(t3, meas{3}.Track3)); hold off; xlim([350, 450]); xlabel('Time [s]'); ylabel('Displacement [m]'); legend({meas{3}.Track1_Name, meas{3}.Track2_Name, meas{3}.Track3_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas3_disp #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_disp.pdf" :var figsize="wide-noral" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_disp #+CAPTION: Time domain - measurement 3 #+RESULTS: fig:meas3_disp [[file:figs/meas3_disp.png]] We then compute the PSD of each track before and after turning off the hexapod and plot the results in the figures [[fig:meas3_hexa_z_psd]], [[fig:meas3_ry_z_psd]] and [[fig:meas3_ty_y_psd]]. #+begin_src matlab :exports code :results silent [pxx311, f31] = pwelch(meas{3}.Track1(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx312, f32] = pwelch(meas{3}.Track1(ceil(420/dt):end), psd_window, [], [], Fs); [pxx321, ~] = pwelch(meas{3}.Track2(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx322, ~] = pwelch(meas{3}.Track2(ceil(420/dt):end), psd_window, [], [], Fs); [pxx331, ~] = pwelch(meas{3}.Track3(1:ceil(400/dt)), psd_window, [], [], Fs); [pxx332, ~] = pwelch(meas{3}.Track3(ceil(420/dt):end), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f31, sqrt(pxx311)./abs(squeeze(freqresp(L4C_G, f31, 'Hz')))); plot(f32, sqrt(pxx312)./abs(squeeze(freqresp(L4C_G, f32, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track1_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_hexa_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_hexa_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_hexa_z_psd #+CAPTION: PSD of the Z velocity of the Hexapod - measurement 3 #+RESULTS: fig:meas3_hexa_z_psd [[file:figs/meas3_hexa_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f31, sqrt(pxx321)./abs(squeeze(freqresp(L4C_G, f31, 'Hz')))); plot(f32, sqrt(pxx322)./abs(squeeze(freqresp(L4C_G, f32, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track2_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_ry_z_psd #+CAPTION: PSD of the Z velocity of the Ry stage - measurement 3 #+RESULTS: fig:meas3_ry_z_psd [[file:figs/meas3_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f31, sqrt(pxx331)./abs(squeeze(freqresp(L4C_G, f31, 'Hz')))); plot(f32, sqrt(pxx332)./abs(squeeze(freqresp(L4C_G, f32, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{3}.Track3_Name)); legend({'0-400', '420-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas3_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas3_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas3_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 3 #+RESULTS: fig:meas3_ty_y_psd [[file:figs/meas3_ty_y_psd.png]] #+begin_important Turning ON induces some motion on the hexapod in the z direction (figure [[fig:meas3_hexa_z_psd]]), on the tilt stage in the z direction (figure [[fig:meas3_ry_z_psd]]) and on the y motion of the Ty stage (figure [[fig:meas3_ty_y_psd]]): - at 17Hz - at 34Hz #+end_important * Measurement 4 - Effect of the Splip-Ring and Spindle The slip ring is turned on at 300s, then the spindle is turned on at 620s (table [[tab:conf_meas4]]). The time domain signals are shown figure [[fig:meas4]]. #+CAPTION: Stages configuration - Measurement 4 #+NAME: tab:conf_meas4 | Time | 0-300 | 300-620 | 620-end | |----------+-------+---------+---------| | Ty | OFF | OFF | OFF | | Ry | OFF | OFF | OFF | | SlipRing | OFF | *ON* | *ON* | | Spindle | OFF | OFF | *ON* | | Hexa | OFF | OFF | OFF | #+begin_src matlab :exports results :results silent figure; hold on; plot(t4, meas{4}.Track1); plot(t4, meas{4}.Track2); plot(t4, meas{4}.Track3); hold off; xlim([t4(1), t4(end)]); xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{4}.Track1_Name, meas{4}.Track2_Name, meas{4}.Track3_Name}, 'Location', 'southwest') #+end_src #+NAME: fig:meas4 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4 #+CAPTION: Time domain - measurement 4 #+RESULTS: fig:meas4 [[file:figs/meas4.png]] #+begin_src matlab :exports none :results silent figure; subaxis(1, 2, 1); hold on; plot(t4, cumtrapz(t4, meas{4}.Track1)); plot(t4, cumtrapz(t4, meas{4}.Track2)); plot(t4, cumtrapz(t4, meas{4}.Track3)); hold off; xlim([250, 350]); xlabel('Time [s]'); ylabel('Displacement [m]'); legend({meas{4}.Track1_Name, meas{4}.Track2_Name, meas{4}.Track3_Name}, 'Location', 'northwest') subaxis(1, 2, 2); hold on; plot(t4, cumtrapz(t4, meas{4}.Track1)); plot(t4, cumtrapz(t4, meas{4}.Track2)); plot(t4, cumtrapz(t4, meas{4}.Track3)); hold off; xlim([600, 650]); xlabel('Time [s]'); ylabel('Displacement [m]'); #+end_src If we integrate this signal, we obtain Figure [[fig:meas4_int]]. #+NAME: fig:meas4_int #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_int.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_int #+CAPTION: Time domain - measurement 4 #+RESULTS: fig:meas4_int [[file:figs/meas4_int.png]] The PSD of each track are computed using the code below. #+begin_src matlab :exports none :results silent [pxx411, f41] = pwelch(meas{4}.Track1(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx412, f42] = pwelch(meas{4}.Track1(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx413, f43] = pwelch(meas{4}.Track1(ceil(640/dt):end), psd_window, [], [], Fs); [pxx421, ~] = pwelch(meas{4}.Track2(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx422, ~] = pwelch(meas{4}.Track2(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx423, ~] = pwelch(meas{4}.Track2(ceil(640/dt):end), psd_window, [], [], Fs); [pxx431, ~] = pwelch(meas{4}.Track3(1:ceil(280/dt)), psd_window, [], [], Fs); [pxx432, ~] = pwelch(meas{4}.Track3(ceil(280/dt):ceil(600/dt)), psd_window, [], [], Fs); [pxx433, ~] = pwelch(meas{4}.Track3(ceil(640/dt):end), psd_window, [], [], Fs); f41 = f41(2:end); f42 = f42(2:end); f43 = f43(2:end); pxx411 = pxx411(2:end); pxx412 = pxx412(2:end); pxx413 = pxx413(2:end); pxx421 = pxx421(2:end); pxx422 = pxx422(2:end); pxx423 = pxx423(2:end); pxx431 = pxx431(2:end); pxx432 = pxx432(2:end); pxx433 = pxx433(2:end); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f41, sqrt(pxx411)./abs(squeeze(freqresp(L4C_G, f41, 'Hz')))); plot(f42, sqrt(pxx412)./abs(squeeze(freqresp(L4C_G, f42, 'Hz')))); plot(f43, sqrt(pxx413)./abs(squeeze(freqresp(L4C_G, f43, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track1_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_hexa_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_hexa_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_hexa_z_psd #+CAPTION: PSD of the Z velocity of the Hexapod - measurement 4 #+RESULTS: fig:meas4_hexa_z_psd [[file:figs/meas4_hexa_z_psd.png]] We plot the PSD of the displacement. #+begin_src matlab :exports none :results silent figure; hold on; plot(f41, sqrt(pxx411)./abs(squeeze(freqresp(L4C_G, f41, 'Hz')))./(2*pi*f41)); plot(f42, sqrt(pxx412)./abs(squeeze(freqresp(L4C_G, f42, 'Hz')))./(2*pi*f42)); plot(f43, sqrt(pxx413)./abs(squeeze(freqresp(L4C_G, f43, 'Hz')))./(2*pi*f43)); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track1_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_hexa_z_psd_int #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_hexa_z_psd_int.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_hexa_z_psd_int #+CAPTION: PSD_INT of the Z velocity of the Hexapod - measurement 4 #+RESULTS: fig:meas4_hexa_z_psd_int [[file:figs/meas4_hexa_z_psd_int.png]] And we compute the Cumulative amplitude spectrum. #+begin_src matlab :exports none :results silent figure; hold on; plot(f41, sqrt(cumsum(pxx431./abs(squeeze(freqresp(L4C_G, f41, 'Hz'))).^2./(2*pi*f41).*(f41 - [0; f41(1:end-1)])))); plot(f42, sqrt(cumsum(pxx432./abs(squeeze(freqresp(L4C_G, f42, 'Hz'))).^2./(2*pi*f42).*(f42 - [0; f42(1:end-1)])))); plot(f43, sqrt(cumsum(pxx433./abs(squeeze(freqresp(L4C_G, f43, 'Hz'))).^2./(2*pi*f43).*(f43 - [0; f43(1:end-1)])))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('CAS [$m$ rms]'); title(sprintf('%s', meas{4}.Track1_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f41, sqrt(pxx421)./abs(squeeze(freqresp(L4C_G, f41, 'Hz')))); plot(f42, sqrt(pxx422)./abs(squeeze(freqresp(L4C_G, f42, 'Hz')))); plot(f43, sqrt(pxx423)./abs(squeeze(freqresp(L4C_G, f43, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track2_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_ry_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_ry_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_ry_z_psd #+CAPTION: PSD of the Ry rotation in the Y direction - measurement 4 #+RESULTS: fig:meas4_ry_z_psd [[file:figs/meas4_ry_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f41, sqrt(pxx431)./abs(squeeze(freqresp(L4C_G, f41, 'Hz')))); plot(f42, sqrt(pxx432)./abs(squeeze(freqresp(L4C_G, f42, 'Hz')))); plot(f43, sqrt(pxx433)./abs(squeeze(freqresp(L4C_G, f43, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); title(sprintf('%s', meas{4}.Track3_Name)); legend({'0-280', '320-600', '640-end'}, 'Location', 'southwest'); hold off; #+end_src #+NAME: fig:meas4_ty_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas4_ty_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas4_ty_y_psd #+CAPTION: PSD of the Ty velocity in the Y direction - measurement 4 #+RESULTS: fig:meas4_ty_y_psd [[file:figs/meas4_ty_y_psd.png]] #+begin_important Turning ON the splipring seems to not add motions on the stages measured. It even seems to lower the motion of the Ty stage (figure [[fig:meas4_ty_y_psd]]): does that make any sense? Turning ON the spindle induces motions: - at 5Hz on each motion measured - at 22.5Hz on the Z motion of the Hexapod. Can this is due to some 50Hz? - at 62Hz on each motion measured #+end_important * Measurement 5 - Transmission from ground to marble This measurement just consists of measurement of Y-Z motion of the ground and the marble. The time domain signals are shown on figure [[fig:meas5]]. #+begin_src matlab :exports results :results silent figure; hold on; plot(t5, meas{5}.Track1); plot(t5, meas{5}.Track2); plot(t5, meas{5}.Track3); plot(t5, meas{5}.Track4); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); legend({meas{5}.Track1_Name, meas{5}.Track2_Name, meas{5}.Track3_Name, meas{5}.Track4_Name}, 'Location', 'northeast') #+end_src #+NAME: fig:meas5 #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5 #+CAPTION: Time domain - measurement 5 #+RESULTS: fig:meas5 [[file:figs/meas5.png]] We compute the PSD of each track and we plot the PSD of the Z motion for the ground and marble on figure [[fig:meas5_z_psd]] and for the Y motion on figure [[fig:meas5_y_psd]]. #+begin_src matlab :exports code :results silent [pxx51, f51] = pwelch(meas{5}.Track1(:), psd_window, [], [], Fs); [pxx52, f52] = pwelch(meas{5}.Track2(:), psd_window, [], [], Fs); [pxx53, f53] = pwelch(meas{5}.Track3(:), psd_window, [], [], Fs); [pxx54, f54] = pwelch(meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(f51, sqrt(pxx51)./abs(squeeze(freqresp(L4C_G, f51, 'Hz')))); plot(f52, sqrt(pxx52)./abs(squeeze(freqresp(L4C_G, f52, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); legend({meas{5}.Track1_Name, meas{5}.Track2_Name}, 'Location', 'northwest'); hold off; #+end_src #+NAME: fig:meas5_z_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_z_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_z_psd #+CAPTION: PSD of the ground and marble in the Z direction #+RESULTS: fig:meas5_z_psd [[file:figs/meas5_z_psd.png]] #+begin_src matlab :exports none :results silent figure; hold on; plot(f53, sqrt(pxx53)./abs(squeeze(freqresp(L4C_G, f53, 'Hz')))); plot(f54, sqrt(pxx54)./abs(squeeze(freqresp(L4C_G, f54, 'Hz')))); xlim([fmin, fmax]); xticks([1, 10, 100]); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]'); legend({meas{5}.Track3_Name, meas{5}.Track4_Name}, 'Location', 'northwest'); hold off; #+end_src #+NAME: fig:meas5_y_psd #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_y_psd.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_y_psd #+CAPTION: PSD of the ground and marble in the Y direction #+RESULTS: fig:meas5_y_psd [[file:figs/meas5_y_psd.png]] Then, instead of looking at the Power Spectral Density, we can try to estimate the transfer function from a ground motion to the motion of the marble. The transfer functions are shown on figure [[fig:meas5_tf]] and the coherence on figure [[fig:meas5_coh]]. #+begin_src matlab :exports code :results silent [tfz, fz] = tfestimate(meas{5}.Track1(:), meas{5}.Track2(:), psd_window, [], [], Fs); [tfy, fy] = tfestimate(meas{5}.Track3(:), meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; ax1 = subaxis(2,1,1); hold on; plot(fz, abs(tfz)); plot(fy, abs(tfy)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude'); hold off; ax2 = subaxis(2,1,2); hold on; plot(fz, 180/pi*angle(tfz)); plot(fy, 180/pi*angle(tfy)); set(gca,'xscale','log'); yticks(-180:90:180); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([fmin, fmax]); legend({'Z direction', 'Y direction'}, 'Location', 'southwest') #+end_src #+NAME: fig:meas5_tf #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_tf.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_tf #+CAPTION: Transfer function estimation - measurement 5 #+RESULTS: fig:meas5_tf [[file:figs/meas5_tf.png]] #+begin_src matlab :exports code :results silent [cohz, fz] = mscohere(meas{5}.Track1(:), meas{5}.Track2(:), psd_window, [], [], Fs); [cohy, fy] = mscohere(meas{5}.Track3(:), meas{5}.Track4(:), psd_window, [], [], Fs); #+end_src #+begin_src matlab :exports none :results silent figure; hold on; plot(fz, cohz); plot(fy, cohy); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); xlim([fmin, fmax]); legend({'Z direction', 'Y direction'}, 'Location', 'southwest') #+end_src #+NAME: fig:meas5_coh #+HEADER: :tangle no :exports results :results raw :noweb yes #+begin_src matlab :var filepath="figs/meas5_coh.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+LABEL: fig:meas5_coh #+CAPTION: Coherence - measurement 5 #+RESULTS: fig:meas5_coh [[file:figs/meas5_coh.png]] #+begin_important The marble seems to have a resonance at around 20Hz on the Y direction. But the coherence is not good above 20Hz, so it is difficult to estimate resonances. #+end_important