#+TITLE: Modal Analysis :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:shell :eval no-export :END: * Goal The goal is to experimentally extract a *Spatial Model* (mass, damping, stiffness) of the structure (shown on figure [[fig:nass_picture]]) in order to tune the Multi-Body model. #+name: fig:nass_picture #+caption: Picture of the ID31 Micro-Station. (1) Granite (2) Translation Stage (3) Tilt Stage (4) Hexapod (5) Dummy Mass #+attr_html: :width 500px [[file:img/nass_picture.png]] The procedure is represented on figure [[fig:vibration_analysis_procedure]] where we go from left to right. #+name: fig:vibration_analysis_procedure #+caption: Vibration Analysis Procedure #+attr_html: :width 400px [[file:img/vibration_analysis_procedure.png]] First, we obtain a *Response Model* (Frequency Response Functions) from measurements. This is further converted into a *Modal Model* (Natural Frequencies and Mode Shapes). Finally, this is converted into a *Spatial Model* with the Mass/Damping/Stiffness matrices. Theses matrices will be used to tune the Simscape (multi-body) model. The modes we want to identify are those in the frequency range between 0Hz and 150Hz. * Type of Model The model that we want to obtain is a *multi-body model*. It is composed of several *solid bodies connected with springs and dampers*. The solid bodies are represented with different colors on figure [[fig:nass_solidworks]]. In the simscape model, the solid bodies are: - the granite (1 or 2 solids) - the translation stage - the tilt stage - the spindle and slip-ring - the hexapod #+name: fig:nass_solidworks #+caption: CAD view of the ID31 Micro-Station #+attr_html: :width 800px [[file:img/nass_solidworks.png]] However, each of the DOF of the system may not be relevant for the modes present in the frequency band of interest. For instance, the translation stage may not vibrate in the Z direction for all the modes identified. Then, we can block this DOF and this simplifies the model. The modal identification done here will thus permit us to determine *which DOF can be neglected*. * Instrumentation Used In order to perform to Modal Analysis and to obtain first a Response Model, the following devices are used: - An *acquisition system* (OROS) with 24bits ADCs (figure [[fig:oros]]) - 3 tri-axis *Accelerometers* (figure [[fig:accelero_M393B05]]) with parameters shown on table [[tab:accelero_M393B05]] - An *Instrumented Hammer* with various Tips (figure [[fig:instrumented_hammer]]) (figure [[fig:hammer_tips]]) #+name: fig:oros #+caption: Acquisition system: OROS #+attr_html: :width 500px [[file:img/instrumentation/oros.png]] The acquisition system permits to auto-range the inputs (probably using variable gain amplifiers) the obtain the maximum dynamic range. This is done before each measurement. Anti-aliasing filters are also included in the system. #+name: fig:accelero_M393B05 #+caption: Accelerometer used: M393B05 #+attr_html: :width 500px [[file:img/instrumentation/accelero_M393B05.png]] #+name: tab:accelero_M393B05 #+caption: 393B05 Accelerometer Data Sheet | Sensitivity | 10V/g | | Measurement Range | 0.5 g pk | | Broadband Resolution | 0.000004 g rms | | Frequency Range | 0.7 to 450Hz | | Resonance Frequency | > 2.5kHz | Tests have been conducted to determine the most suitable Hammer tip. This has been found that the softer tip gives the best results. It excites more the low frequency range where the coherence is low, the overall coherence was improved. #+name: fig:instrumented_hammer #+caption: Instrumented Hammer #+attr_html: :width 500px [[file:img/instrumentation/instrumented_hammer.png]] #+name: fig:hammer_tips #+caption: Hammer tips #+attr_html: :width 500px [[file:img/instrumentation/hammer_tips.png]] The accelerometers are glued on the structure. * Structure Preparation and Test Planning ** Structure Preparation All the stages are turned ON. This is done for two reasons: - Be closer to the real dynamic of the station in used - If the control system of stages are turned OFF, this would results in very low frequency modes un-identifiable with the current setup, and this will also decouple the dynamics which would not be the case in practice This is critical for the translation stage and the spindle as their is no stiffness in the free DOF (air-bearing for the spindle for instance). The alternative would have been to mechanically block the stages with screws, but this may result in changing the modes. The stages turned ON are: - Translation Stage - Tilt Stage - Spindle and Slip-Ring - Hexapod The top part representing the NASS and the sample platform have been removed in order to reduce the complexity of the dynamics and also because this will be further added in the model inside Simscape. All the stages are moved to their zero position (Ty, Ry, Rz, Slip-Ring, Hexapod). All other elements have been remove from the granite such as another heavy positioning system. ** Test Planing The goal is to identify the full $N \times N$ FRF matrix (where $N$ is the number of degree of freedom of the system). However, the principle of reciprocity states that: \[ H_{jk} = \frac{X_j}{F_k} = H_{kj} = \frac{X_k}{F_j} \] Thus, only one column or one line of the matrix has to be identified. Either we choose to identify $\frac{X_k}{F_i}$ or $\frac{X_i}{F_k}$ for any chosen $k$ and for $i = 1,\ ...,\ N$. We here choose to identify $\frac{X_i}{F_k}$ for practical reasons: - it is easier to glue the accelerometers on some stages than to excite this particular stage with the Hammer The measurement thus consists of: - always excite the structure at the same location with the Hammer - Move the accelerometers to measure all the DOF of the structure ** Location of the Accelerometers 4 tri-axis accelerometers are used for each solid body. Only 2 could have been used as only 6DOF have to be measured, however, we have chosen to have some *redundancy*. This could also help us identify measurement problems or flexible modes is present. The position of the accelerometers are: - 4 on the first granite - 4 on the second granite (figure [[fig:accelerometers_granite2_overview]]) - 4 on top of the translation stage (figure [[fig:accelerometers_ty_overview]]) - 4 on top of the tilt stage - 4 on top of the spindle - 4 on top of the hexapod (figure [[fig:accelerometers_hexa_overview]]) #+name: fig:accelerometers_granite2_overview #+caption: Accelerometers located on the top granite #+attr_html: :width 500px [[file:img/accelerometers/accelerometers_granite2_overview.jpg]] #+name: fig:accelerometers_ty_overview #+caption: Accelerometers located on top of the translation stage #+attr_html: :width 500px [[file:img/accelerometers/accelerometers_ty_overview.jpg]] #+name: fig:accelerometers_hexa_overview #+caption: Accelerometers located on the Hexapod #+attr_html: :width 500px [[file:img/accelerometers/accelerometers_hexa_overview.jpg]] ** Hammer Impacts Only 3 impact points are used. The impact points are shown on figures [[fig:hammer_x]], [[fig:hammer_y]] and [[fig:hammer_z]]. #+name: fig:hammer_x #+caption: Hammer Blow in the X direction #+attr_html: :width 300px [[file:img/impacts/hammer_x.gif]] #+name: fig:hammer_y #+caption: Hammer Blow in the Y direction #+attr_html: :width 300px [[file:img/impacts/hammer_y.gif]] #+name: fig:hammer_z #+caption: Hammer Blow in the Z direction #+attr_html: :width 300px [[file:img/impacts/hammer_z.gif]] * Signal Processing The measurements are averaged 10 times (figure [[fig:general_parameters]]) corresponding to 10 hammer impacts. #+name: fig:general_parameters #+caption: General Acquisition Settings #+attr_html: :width 500px [[file:img/parameters/general_parameters.jpg]] Windowing is used on the force response signals. A boxcar window (figure [[fig:window_force]]) is used for the force signal as once the impact on the structure is done, the measured signal is meaningless. An exponential window (figure [[fig:window_response]]) is used for the response signal as we are measuring transient signals and most of the information is located at the beginning of the signal. #+name: fig:window_force #+caption: Window used for the force signal #+attr_html: :width 500px [[file:img/parameters/window_force.jpg]] #+name: fig:window_response #+caption: Window used for the response signal #+attr_html: :width 500px [[file:img/parameters/window_response.jpg]] * Frequency Response Functions and Coherence Results ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data #+begin_src matlab meas1_raw = load('modal_analysis/raw_data/Measurement1.mat'); #+end_src ** Raw Force Data #+begin_src matlab :exports none time = linspace(0, meas1_raw.Track1_X_Resolution*length(meas1_raw.Track1), length(meas1_raw.Track1)); figure; plot(time, meas1_raw.Track1); xlabel('Time [s]'); ylabel('Force [N]'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/raw_data_force.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:raw_data_force #+CAPTION: Raw Force Data from Hammer Blow [[file:figs/raw_data_force.png]] #+begin_src matlab :exports none xlim([22.1, 22.3]); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/raw_data_force_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:raw_data_force_zoom #+CAPTION: Raw Force Data from Hammer Blow - Zoom [[file:figs/raw_data_force_zoom.png]] ** Raw Response Data #+begin_src matlab :exports none figure; plot(time, meas1_raw.Track2); xlabel('Time [s]'); ylabel('Acceleration [m/s2]'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/raw_data_acceleration.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:raw_data_acceleration #+CAPTION: Raw Acceleration Data from Accelerometer [[file:figs/raw_data_acceleration.png]] #+begin_src matlab :exports none xlim([22.1, 22.5]); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/raw_data_acceleration_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:raw_data_acceleration_zoom #+CAPTION: Raw Acceleration Data from Accelerometer - Zoom [[file:figs/raw_data_acceleration_zoom.png]] ** Load Data #+begin_src matlab meas1 = load('modal_analysis/frf_coh/Measurement1.mat'); #+end_src ** FRF and Coherence Results #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Mod); set(gca, 'XTickLabel',[]); ylabel('Magnitude'); ax2 = subplot(2, 1, 2); plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Phas); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); linkaxes([ax1,ax2],'x'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/frf_result_example.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:frf_result_example #+CAPTION: Example of one measured FRF [[file:figs/frf_result_example.png]] #+begin_src matlab :exports none figure; plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_Coh_2_1_RMS_Y_Val); xlabel('Frequency [Hz]'); ylabel('Coherence'); #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/coh_result_example.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:coh_result_example #+CAPTION: Example of one measured Coherence [[file:figs/coh_result_example.png]] * Mode Shapes Multiple modal extraction techniques can be used (SIMO, MIMO, narrow band, wide band, ...). First preliminary results on 10 identified modes are presented here. #+name: fig:mode1 #+caption: Mode 1 [[file:img/modes/mode1.gif]] #+name: fig:mode2 #+caption: Mode 2 [[file:img/modes/mode2.gif]] #+name: fig:mode3 #+caption: Mode 3 [[file:img/modes/mode3.gif]] #+name: fig:mode4 #+caption: Mode 4 [[file:img/modes/mode4.gif]] #+name: fig:mode5 #+caption: Mode 5 [[file:img/modes/mode5.gif]] #+name: fig:mode6 #+caption: Mode 6 [[file:img/modes/mode6.gif]] #+name: fig:mode7 #+caption: Mode 7 [[file:img/modes/mode7.gif]] #+name: fig:mode8 #+caption: Mode 8 [[file:img/modes/mode8.gif]] #+name: fig:mode9 #+caption: Mode 9 [[file:img/modes/mode9.gif]] #+name: fig:mode10 #+caption: Mode 10 [[file:img/modes/mode10.gif]] * Obtained Modal Matrices From the modal analysis software, we can export the obtained *eigen matrices*: \[ \begin{bmatrix} \omega_1^2 & & 0 \\ & \ddots & \\ 0 & & \omega_n^2 \end{bmatrix}; \quad \Psi = \begin{bmatrix} & & \\ \{\psi_1\} & \dots & \{\psi_n\} \\ & & \end{bmatrix} \] where $\bar{\omega}_r^2$ is the $r^\text{th}$ eigenvalue squared and $\{\phi\}_r$ is a description of the corresponding *mode shape*. The file containing the eigen frequencies and mode shapes are shown below (for the first mode). #+begin_src bash :results output :exports results :eval no-export sed 80q modal_analysis/modes_propres_narband.asc #+end_src #+RESULTS: #+begin_example Created by N-Modal Estimator: cmif 18-Jun-19 16:31:25 Mode 1 freq = 11.11191Hz damp = 10.51401% modal A = 8.52879e+003-2.29043e+003i modal B = -9.64203e+004-6.08978e+005i Mode matrix of local coordinate [DOF: Re IM] 1X+: -9.34637e-002 4.52445e-002 1Y+: 2.33790e-001 1.41439e-003 1Z+: -1.73754e-002 6.02449e-003 2X+: -7.42108e-002 3.91543e-002 2Y+: 2.41566e-001 -1.44869e-003 2Z+: -5.99285e-003 2.10370e-003 4X+: -1.02163e-001 2.79561e-002 4Y+: 2.29048e-001 2.89782e-002 4Z+: -2.85130e-002 1.77132e-004 5X+: -8.77132e-002 3.34081e-002 5Y+: 2.14182e-001 2.14655e-002 5Z+: -1.54521e-002 1.26682e-002 6X+: -7.90143e-002 2.42583e-002 6Y+: 2.20669e-001 2.12738e-002 6Z+: 4.60755e-002 4.96406e-003 7X+: -7.79654e-002 2.58385e-002 7Y+: 2.06861e-001 3.48019e-002 7Z+: -1.78311e-002 -1.29704e-002 8X+: -8.49357e-002 3.55200e-002 8Y+: 2.07470e-001 3.59745e-002 8Z+: -7.66974e-002 -3.19813e-003 9X+: -7.38565e-002 1.95146e-002 9Y+: 2.17403e-001 2.01550e-002 9Z+: -1.77073e-002 -3.46414e-003 10X+: -7.77587e-002 2.36700e-002 10Y+: 2.35654e-001 -2.14540e-002 10Z+: 7.94165e-002 -2.45897e-002 11X+: -8.17972e-002 2.20583e-002 11Y+: 2.20906e-001 -4.30164e-003 11Z+: -5.60520e-003 3.10187e-003 12X+: -8.64261e-002 3.66022e-002 12Y+: 2.15000e-001 -5.74661e-003 12Z+: -1.22622e-001 4.11767e-002 13X+: -4.25169e-002 1.56602e-002 13Y+: 5.31036e-002 -1.73951e-002 13Z+: -4.07130e-002 1.26884e-002 14X+: -3.85032e-002 1.29431e-002 14Y+: 5.36716e-002 -1.80868e-002 14Z+: 1.00367e-001 -3.48798e-002 15X+: -4.25524e-002 1.46363e-002 15Y+: 5.19668e-002 -1.69744e-002 15Z+: 5.89747e-003 -2.32428e-003 16X+: -4.31268e-002 1.38332e-002 16Y+: 5.07545e-002 -1.53045e-002 16Z+: -1.04172e-001 3.17984e-002 17X+: -2.69757e-002 9.07955e-003 17Y+: 3.07837e-002 -9.44663e-003 17Z+: -7.63502e-003 1.68203e-003 18X+: -3.00097e-002 9.23966e-003 18Y+: 2.83585e-002 -8.97747e-003 18Z+: 1.52467e-001 -4.78675e-002 19X+: -2.70223e-002 6.16478e-003 19Y+: 3.06149e-002 -6.25382e-003 19Z+: -4.84888e-003 1.93970e-003 20X+: -2.90976e-002 7.13184e-003 20Y+: 3.36738e-002 -7.30875e-003 20Z+: -1.66902e-001 3.93419e-002 3X+: -9.40720e-002 3.93724e-002 3Y+: 2.52307e-001 0.00000e+000 3Z+: -1.53864e-002 -9.25720e-004 21X+: -7.91940e-002 4.39648e-002 21Y+: 2.04567e-001 9.49987e-003 21Z+: -1.56087e-002 7.08838e-003 22X+: -1.01070e-001 3.13534e-002 22Y+: 1.92270e-001 1.80423e-002 22Z+: 2.93053e-003 -1.97308e-003 23X+: -8.86455e-002 4.29906e-002 23Z+: -3.38351e-002 1.81362e-003 23Y-: -1.90862e-001 -2.53414e-002 #+end_example * Compute the Modal Model ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Position of the accelerometers There are 23 accelerometers: - 4 on the bottom granite - 4 on the top granite - 4 on top of the translation stage - 4 on the tilt stage - 3 on top of the spindle - 4 on top of the hexapod The coordinates defined in the software are displayed below. #+begin_src bash :results output :exports results :eval no-export sed -n 18,40p modal_analysis/acc_coordinates.txt | tac -- #+end_src #+RESULTS: #+begin_example 1 1.0000e-001 1.0000e-001 1.1500e+000 0 Top 2 1.0000e-001 -1.0000e-001 1.1500e+000 0 Top 3 -1.0000e-001 -1.0000e-001 1.1500e+000 0 Top 4 -1.0000e-001 1.0000e-001 1.1500e+000 0 Top 5 4.0000e-001 4.0000e-001 9.5000e-001 0 inner 6 4.0000e-001 -4.0000e-001 9.5000e-001 0 inner 7 -4.0000e-001 -4.0000e-001 9.5000e-001 0 inner 8 -4.0000e-001 4.0000e-001 9.5000e-001 0 inner 9 5.0000e-001 5.0000e-001 9.0000e-001 0 outer 10 5.0000e-001 -5.0000e-001 9.0000e-001 0 outer 11 -5.0000e-001 -5.0000e-001 9.0000e-001 0 outer 12 -5.0000e-001 5.0000e-001 9.0000e-001 0 outer 13 5.5000e-001 5.5000e-001 5.5000e-001 0 top 14 5.5000e-001 -5.5000e-001 5.5000e-001 0 top 15 -5.5000e-001 -5.5000e-001 5.5000e-001 0 top 16 -5.5000e-001 5.5000e-001 5.5000e-001 0 top 17 9.5000e-001 9.5000e-001 4.0000e-001 0 low 18 9.5000e-001 -9.5000e-001 4.0000e-001 0 low 19 -9.5000e-001 -9.5000e-001 4.0000e-001 0 low 20 -9.5000e-001 9.5000e-001 4.0000e-001 0 low 21 2.0000e-001 2.0000e-001 8.5000e-001 0 bot 22 0.0000e+000 -2.0000e-001 8.5000e-001 0 bot 23 -2.0000e-001 2.0000e-001 8.5000e-001 0 bot #+end_example #+name: tab:acc_location #+caption: Location of each Accelerometer (using the normal coordinate frame with X aligned with the X ray) | *Node number* | *Solid Body* | *Location* | *X* | *Y* | *Z* | |---------------+-------------------+------------+-------+-------+------| | 1 | Hexapod - Top | -X/-Y | -0.10 | -0.10 | 1.15 | | 2 | | -X/+Y | -0.10 | 0.10 | 1.15 | | 3 | | +X/+Y | 0.10 | 0.10 | 1.15 | | 4 | | +X/-Y | 0.10 | -0.10 | 1.15 | |---------------+-------------------+------------+-------+-------+------| | 5 | Tilt - Top | -X/-Y | -0.40 | -0.40 | 0.95 | | 6 | | -X/+Y | -0.40 | 0.40 | 0.95 | | 7 | | +X/+Y | 0.40 | 0.40 | 0.95 | | 8 | | +X/-Y | 0.40 | -0.40 | 0.95 | |---------------+-------------------+------------+-------+-------+------| | 9 | Translation - Top | -X/-Y | -0.50 | -0.50 | 0.90 | | 10 | | -X/+Y | -0.50 | 0.50 | 0.90 | | 11 | | +X/+Y | 0.50 | 0.50 | 0.90 | | 12 | | +X/-Y | 0.50 | -0.50 | 0.90 | |---------------+-------------------+------------+-------+-------+------| | 13 | Top Granite | -X/-Y | -0.55 | -0.50 | 0.55 | | 14 | | -X/+Y | -0.55 | 0.50 | 0.55 | | 15 | | +X/+Y | 0.55 | 0.50 | 0.55 | | 16 | | +X/-Y | 0.55 | -0.50 | 0.55 | |---------------+-------------------+------------+-------+-------+------| | 17 | Bottom Granite | -X/-Y | -0.95 | -0.90 | 0.40 | | 18 | | -X/+Y | -0.95 | 0.90 | 0.40 | | 19 | | +X/+Y | 0.95 | 0.90 | 0.40 | | 20 | | +X/-Y | 0.95 | -0.90 | 0.40 | |---------------+-------------------+------------+-------+-------+------| | 21 | Spindle - Top | -X/-Y | -0.20 | -0.20 | 0.85 | | 22 | | +0/+Y | 0.00 | 0.20 | 0.85 | | 23 | | +X/-Y | 0.20 | -0.20 | 0.85 | ** Define positions of the accelerometers on matlab We define the X-Y-Z position of each sensor. Each line corresponds to one accelerometer, X-Y-Z position in meter. #+begin_src matlab positions = [... -0.10, -0.10, 1.15 ; ... -0.10, 0.10, 1.15 ; ... 0.10, 0.10, 1.15 ; ... 0.10, -0.10, 1.15 ; ... -0.40, -0.40, 0.95 ; ... -0.40, 0.40, 0.95 ; ... 0.40, 0.40, 0.95 ; ... 0.40, -0.40, 0.95 ; ... -0.50, -0.50, 0.90 ; ... -0.50, 0.50, 0.90 ; ... 0.50, 0.50, 0.90 ; ... 0.50, -0.50, 0.90 ; ... -0.55, -0.50, 0.55 ; ... -0.55, 0.50, 0.55 ; ... 0.55, 0.50, 0.55 ; ... 0.55, -0.50, 0.55 ; ... -0.95, -0.90, 0.40 ; ... -0.95, 0.90, 0.40 ; ... 0.95, 0.90, 0.40 ; ... 0.95, -0.90, 0.40 ; ... -0.20, -0.20, 0.85 ; ... 0.00, 0.20, 0.85 ; ... 0.20, -0.20, 0.85 ]; #+end_src #+begin_src matlab figure; hold on; fill3(positions(1:4, 1), positions(1:4, 2), positions(1:4, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(5:8, 1), positions(5:8, 2), positions(5:8, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(9:12, 1), positions(9:12, 2), positions(9:12, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(13:16, 1), positions(13:16, 2), positions(13:16, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(17:20, 1), positions(17:20, 2), positions(17:20, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(21:23, 1), positions(21:23, 2), positions(21:23, 3), 'k', 'FaceAlpha', 0.5) hold off; #+end_src ** Import the modal vectors on matlab *** Mode1 #+begin_src bash :results output :exports none :eval no-export sed -n 12,80p modal_analysis/modes_propres_narband.asc #+end_src #+RESULTS: #+begin_example 1X+: -9.34637e-002 4.52445e-002 1Y+: 2.33790e-001 1.41439e-003 1Z+: -1.73754e-002 6.02449e-003 2X+: -7.42108e-002 3.91543e-002 2Y+: 2.41566e-001 -1.44869e-003 2Z+: -5.99285e-003 2.10370e-003 4X+: -1.02163e-001 2.79561e-002 4Y+: 2.29048e-001 2.89782e-002 4Z+: -2.85130e-002 1.77132e-004 5X+: -8.77132e-002 3.34081e-002 5Y+: 2.14182e-001 2.14655e-002 5Z+: -1.54521e-002 1.26682e-002 6X+: -7.90143e-002 2.42583e-002 6Y+: 2.20669e-001 2.12738e-002 6Z+: 4.60755e-002 4.96406e-003 7X+: -7.79654e-002 2.58385e-002 7Y+: 2.06861e-001 3.48019e-002 7Z+: -1.78311e-002 -1.29704e-002 8X+: -8.49357e-002 3.55200e-002 8Y+: 2.07470e-001 3.59745e-002 8Z+: -7.66974e-002 -3.19813e-003 9X+: -7.38565e-002 1.95146e-002 9Y+: 2.17403e-001 2.01550e-002 9Z+: -1.77073e-002 -3.46414e-003 10X+: -7.77587e-002 2.36700e-002 10Y+: 2.35654e-001 -2.14540e-002 10Z+: 7.94165e-002 -2.45897e-002 11X+: -8.17972e-002 2.20583e-002 11Y+: 2.20906e-001 -4.30164e-003 11Z+: -5.60520e-003 3.10187e-003 12X+: -8.64261e-002 3.66022e-002 12Y+: 2.15000e-001 -5.74661e-003 12Z+: -1.22622e-001 4.11767e-002 13X+: -4.25169e-002 1.56602e-002 13Y+: 5.31036e-002 -1.73951e-002 13Z+: -4.07130e-002 1.26884e-002 14X+: -3.85032e-002 1.29431e-002 14Y+: 5.36716e-002 -1.80868e-002 14Z+: 1.00367e-001 -3.48798e-002 15X+: -4.25524e-002 1.46363e-002 15Y+: 5.19668e-002 -1.69744e-002 15Z+: 5.89747e-003 -2.32428e-003 16X+: -4.31268e-002 1.38332e-002 16Y+: 5.07545e-002 -1.53045e-002 16Z+: -1.04172e-001 3.17984e-002 17X+: -2.69757e-002 9.07955e-003 17Y+: 3.07837e-002 -9.44663e-003 17Z+: -7.63502e-003 1.68203e-003 18X+: -3.00097e-002 9.23966e-003 18Y+: 2.83585e-002 -8.97747e-003 18Z+: 1.52467e-001 -4.78675e-002 19X+: -2.70223e-002 6.16478e-003 19Y+: 3.06149e-002 -6.25382e-003 19Z+: -4.84888e-003 1.93970e-003 20X+: -2.90976e-002 7.13184e-003 20Y+: 3.36738e-002 -7.30875e-003 20Z+: -1.66902e-001 3.93419e-002 3X+: -9.40720e-002 3.93724e-002 3Y+: 2.52307e-001 0.00000e+000 3Z+: -1.53864e-002 -9.25720e-004 21X+: -7.91940e-002 4.39648e-002 21Y+: 2.04567e-001 9.49987e-003 21Z+: -1.56087e-002 7.08838e-003 22X+: -1.01070e-001 3.13534e-002 22Y+: 1.92270e-001 1.80423e-002 22Z+: 2.93053e-003 -1.97308e-003 23X+: -8.86455e-002 4.29906e-002 23Z+: -3.38351e-002 1.81362e-003 23Y-: -1.90862e-001 -2.53414e-002 #+end_example #+begin_src matlab mode1 = [... -9.34637e-002+j*4.52445e-002, +2.33790e-001+j*1.41439e-003, -1.73754e-002+j*6.02449e-003; -7.42108e-002+j*3.91543e-002, +2.41566e-001-j*1.44869e-003, -5.99285e-003+j*2.10370e-003; -9.40720e-002+j*3.93724e-002, +2.52307e-001+j*0.00000e+000, -1.53864e-002-j*9.25720e-004; -1.02163e-001+j*2.79561e-002, +2.29048e-001+j*2.89782e-002, -2.85130e-002+j*1.77132e-004; -8.77132e-002+j*3.34081e-002, +2.14182e-001+j*2.14655e-002, -1.54521e-002+j*1.26682e-002; -7.90143e-002+j*2.42583e-002, +2.20669e-001+j*2.12738e-002, +4.60755e-002+j*4.96406e-003; -7.79654e-002+j*2.58385e-002, +2.06861e-001+j*3.48019e-002, -1.78311e-002-j*1.29704e-002; -8.49357e-002+j*3.55200e-002, +2.07470e-001+j*3.59745e-002, -7.66974e-002-j*3.19813e-003; -7.38565e-002+j*1.95146e-002, +2.17403e-001+j*2.01550e-002, -1.77073e-002-j*3.46414e-003; -7.77587e-002+j*2.36700e-002, +2.35654e-001-j*2.14540e-002, +7.94165e-002-j*2.45897e-002; -8.17972e-002+j*2.20583e-002, +2.20906e-001-j*4.30164e-003, -5.60520e-003+j*3.10187e-003; -8.64261e-002+j*3.66022e-002, +2.15000e-001-j*5.74661e-003, -1.22622e-001+j*4.11767e-002; -4.25169e-002+j*1.56602e-002, +5.31036e-002-j*1.73951e-002, -4.07130e-002+j*1.26884e-002; -3.85032e-002+j*1.29431e-002, +5.36716e-002-j*1.80868e-002, +1.00367e-001-j*3.48798e-002; -4.25524e-002+j*1.46363e-002, +5.19668e-002-j*1.69744e-002, +5.89747e-003-j*2.32428e-003; -4.31268e-002+j*1.38332e-002, +5.07545e-002-j*1.53045e-002, -1.04172e-001+j*3.17984e-002; -2.69757e-002+j*9.07955e-003, +3.07837e-002-j*9.44663e-003, -7.63502e-003+j*1.68203e-003; -3.00097e-002+j*9.23966e-003, +2.83585e-002-j*8.97747e-003, +1.52467e-001-j*4.78675e-002; -2.70223e-002+j*6.16478e-003, +3.06149e-002-j*6.25382e-003, -4.84888e-003+j*1.93970e-003; -2.90976e-002+j*7.13184e-003, +3.36738e-002-j*7.30875e-003, -1.66902e-001+j*3.93419e-002; -7.91940e-002+j*4.39648e-002, +2.04567e-001+j*9.49987e-003, -1.56087e-002+j*7.08838e-003; -1.01070e-001+j*3.13534e-002, +1.92270e-001+j*1.80423e-002, +2.93053e-003-j*1.97308e-003; -8.86455e-002+j*4.29906e-002, +1.90862e-001+j*2.53414e-002, -3.38351e-002+j*1.81362e-003]; #+end_src *** Mode2 #+begin_src bash :results output :exports none :eval no-export sed -n 88,156p modal_analysis/modes_propres_narband.asc #+end_src #+RESULTS: #+begin_example 1X+: 7.56931e-002 3.61548e-002 1Y+: 2.07574e-001 1.69205e-004 1Z+: 1.29733e-002 -6.78426e-004 2X+: 8.58732e-002 2.54470e-002 2Y+: 2.07117e-001 -1.31755e-003 2Z+: -2.13788e-003 -1.24974e-002 4X+: 7.09825e-002 3.66313e-002 4Y+: 2.09969e-001 1.11484e-002 4Z+: 9.19478e-003 3.47272e-002 5X+: 6.23935e-002 1.02488e-002 5Y+: 2.30687e-001 -3.58416e-003 5Z+: 3.27122e-002 -5.85468e-002 6X+: 7.61163e-002 -2.43630e-002 6Y+: 2.26743e-001 -1.15334e-002 6Z+: -6.20205e-003 -1.21742e-001 7X+: 8.01824e-002 -1.94769e-002 7Y+: 1.97485e-001 4.50105e-002 7Z+: -2.21170e-002 9.77052e-002 8X+: 6.19294e-002 8.15075e-003 8Y+: 2.03864e-001 4.45835e-002 8Z+: 2.55133e-002 1.36137e-001 9X+: 4.38135e-002 7.30537e-002 9Y+: 2.28426e-001 -6.58868e-003 9Z+: 1.16313e-002 5.09427e-004 10X+: 5.45770e-002 4.34251e-002 10Y+: 2.50823e-001 0.00000e+000 10Z+: -4.63460e-002 -4.76868e-002 11X+: 5.50987e-002 4.26178e-002 11Y+: 2.29394e-001 5.78236e-002 11Z+: 1.90158e-002 1.09139e-002 12X+: 4.98867e-002 7.30190e-002 12Y+: 2.07871e-001 4.57750e-002 12Z+: 6.69433e-002 9.00315e-002 13X+: 2.48819e-002 3.03222e-002 13Y+: -2.56046e-002 -3.34132e-002 13Z+: 2.13260e-002 2.58544e-002 14X+: 2.45706e-002 2.60221e-002 14Y+: -2.57723e-002 -3.35612e-002 14Z+: -5.71282e-002 -6.61562e-002 15X+: 2.68196e-002 2.83888e-002 15Y+: -2.57263e-002 -3.29627e-002 15Z+: -2.11722e-003 -3.37239e-003 16X+: 2.51442e-002 3.32558e-002 16Y+: -2.54372e-002 -3.25062e-002 16Z+: 5.65780e-002 7.64142e-002 17X+: 1.62437e-002 1.94534e-002 17Y+: -1.31293e-002 -2.05924e-002 17Z+: 1.05274e-003 3.59474e-003 18X+: 1.83431e-002 2.03836e-002 18Y+: -1.16818e-002 -1.86334e-002 18Z+: -8.66632e-002 -1.08216e-001 19X+: 1.62553e-002 1.79588e-002 19Y+: -1.28857e-002 -1.90512e-002 19Z+: 6.25653e-003 4.97733e-003 20X+: 1.63830e-002 2.03943e-002 20Y+: -1.48941e-002 -2.11717e-002 20Z+: 8.68045e-002 1.16491e-001 3X+: 8.17201e-002 2.36079e-002 3Y+: 2.15927e-001 1.61300e-002 3Z+: -5.48456e-004 2.55691e-002 21X+: 6.79204e-002 -5.55513e-002 21Y+: 2.32871e-001 2.33389e-002 21Z+: 1.34345e-002 -2.31815e-002 22X+: 4.02414e-002 -8.38957e-002 22Y+: 2.35273e-001 2.73256e-002 22Z+: -8.51632e-003 -7.49635e-003 23X+: 6.18293e-002 -5.99671e-002 23Z+: 1.63533e-002 6.09161e-002 23Y-: -2.37693e-001 -4.34204e-002 #+end_example #+begin_src matlab mode2 = [... +7.56931e-002+j*3.61548e-002, +2.07574e-001+j*1.69205e-004, +1.29733e-002-j*6.78426e-004; +8.58732e-002+j*2.54470e-002, +2.07117e-001-j*1.31755e-003, -2.13788e-003-j*1.24974e-002; +8.17201e-002+j*2.36079e-002, +2.15927e-001+j*1.61300e-002, -5.48456e-004+j*2.55691e-002; +7.09825e-002+j*3.66313e-002, +2.09969e-001+j*1.11484e-002, +9.19478e-003+j*3.47272e-002; +6.23935e-002+j*1.02488e-002, +2.30687e-001-j*3.58416e-003, +3.27122e-002-j*5.85468e-002; +7.61163e-002-j*2.43630e-002, +2.26743e-001-j*1.15334e-002, -6.20205e-003-j*1.21742e-001; +8.01824e-002-j*1.94769e-002, +1.97485e-001+j*4.50105e-002, -2.21170e-002+j*9.77052e-002; +6.19294e-002+j*8.15075e-003, +2.03864e-001+j*4.45835e-002, +2.55133e-002+j*1.36137e-001; +4.38135e-002+j*7.30537e-002, +2.28426e-001-j*6.58868e-003, +1.16313e-002+j*5.09427e-004; +5.45770e-002+j*4.34251e-002, +2.50823e-001+j*0.00000e+000, -4.63460e-002-j*4.76868e-002; +5.50987e-002+j*4.26178e-002, +2.29394e-001+j*5.78236e-002, +1.90158e-002+j*1.09139e-002; +4.98867e-002+j*7.30190e-002, +2.07871e-001+j*4.57750e-002, +6.69433e-002+j*9.00315e-002; +2.48819e-002+j*3.03222e-002, -2.56046e-002-j*3.34132e-002, +2.13260e-002+j*2.58544e-002; +2.45706e-002+j*2.60221e-002, -2.57723e-002-j*3.35612e-002, -5.71282e-002-j*6.61562e-002; +2.68196e-002+j*2.83888e-002, -2.57263e-002-j*3.29627e-002, -2.11722e-003-j*3.37239e-003; +2.51442e-002+j*3.32558e-002, -2.54372e-002-j*3.25062e-002, +5.65780e-002+j*7.64142e-002; +1.62437e-002+j*1.94534e-002, -1.31293e-002-j*2.05924e-002, +1.05274e-003+j*3.59474e-003; +1.83431e-002+j*2.03836e-002, -1.16818e-002-j*1.86334e-002, -8.66632e-002-j*1.08216e-001; +1.62553e-002+j*1.79588e-002, -1.28857e-002-j*1.90512e-002, +6.25653e-003+j*4.97733e-003; +1.63830e-002+j*2.03943e-002, -1.48941e-002-j*2.11717e-002, +8.68045e-002+j*1.16491e-001; +6.79204e-002-j*5.55513e-002, +2.32871e-001+j*2.33389e-002, +1.34345e-002-j*2.31815e-002; +4.02414e-002-j*8.38957e-002, +2.35273e-001+j*2.73256e-002, -8.51632e-003-j*7.49635e-003; +6.18293e-002-j*5.99671e-002, +2.37693e-001+j*4.34204e-002, +1.63533e-002+j*6.09161e-002] #+end_src *** Mode3 #+begin_src bash :results output :exports none :eval no-export sed -n 164,232p modal_analysis/modes_propres_narband.asc #+end_src #+RESULTS: #+begin_example 1X+: 1.34688e-001 -6.65071e-002 1Y+: 1.55316e-002 1.01277e-002 1Z+: -5.88466e-002 1.14294e-002 2X+: 1.53934e-001 -9.76990e-003 2Y+: 7.17487e-003 1.11925e-002 2Z+: -4.57205e-002 7.26573e-003 4X+: 1.37298e-001 -5.24661e-002 4Y+: 1.19427e-003 -5.39240e-002 4Z+: -1.25915e-002 5.38133e-003 5X+: 2.43192e-001 -3.17374e-002 5Y+: -2.15730e-001 -7.69941e-004 5Z+: -1.56268e-001 1.44118e-002 6X+: -7.27705e-002 -3.54943e-003 6Y+: -2.47706e-001 2.66480e-003 6Z+: -1.21590e-001 1.06054e-002 7X+: -7.25870e-002 -4.62024e-003 7Y+: 2.27073e-001 -3.69315e-002 7Z+: 1.22611e-001 -6.67337e-003 8X+: 2.32731e-001 -2.85516e-002 8Y+: 2.35389e-001 -3.81905e-002 8Z+: 5.35574e-002 4.30394e-004 9X+: 2.64170e-001 -2.67367e-002 9Y+: -2.56227e-001 3.97957e-005 9Z+: -1.95398e-001 2.23549e-002 10X+: -1.66953e-002 -7.95698e-003 10Y+: -2.66547e-001 -2.17687e-002 10Z+: 1.56278e-002 2.23786e-003 11X+: -3.42364e-002 -9.30205e-003 11Y+: 2.52340e-001 -7.47237e-003 11Z+: -9.51643e-004 3.64798e-003 12X+: 2.97574e-001 0.00000e+000 12Y+: 2.23170e-001 -1.37831e-002 12Z+: 1.06266e-001 2.30324e-003 13X+: 2.67178e-002 -4.15723e-004 13Y+: 6.75423e-003 -2.18428e-003 13Z+: -1.69423e-002 3.12395e-003 14X+: -1.12283e-002 2.86316e-004 14Y+: 5.08225e-003 -2.14053e-003 14Z+: 2.18339e-002 -3.25204e-003 15X+: -1.17948e-002 6.82873e-004 15Y+: 1.94914e-002 -2.42151e-003 15Z+: 2.68660e-003 -2.92104e-004 16X+: 1.19490e-002 1.72236e-005 16Y+: 1.83552e-002 -2.71289e-003 16Z+: -2.70914e-002 4.84164e-003 17X+: 1.00173e-002 -5.80552e-005 17Y+: -3.87262e-003 -1.19607e-003 17Z+: -8.53809e-003 1.48424e-003 18X+: -1.22262e-002 5.13096e-004 18Y+: -5.73905e-003 -1.07659e-003 18Z+: 3.51730e-002 -6.13814e-003 19X+: -1.43735e-002 -4.78552e-004 19Y+: 2.31135e-002 -6.30554e-004 19Z+: 1.80171e-003 -1.98835e-004 20X+: 9.17792e-003 5.36661e-004 20Y+: 2.18969e-002 -5.81759e-004 20Z+: -3.72117e-002 5.35813e-003 3X+: 1.61551e-001 1.65478e-002 3Y+: -4.12527e-004 -5.60909e-002 3Z+: -9.00640e-003 3.50754e-003 21X+: 3.38754e-002 -3.38703e-002 21Y+: -2.20843e-002 2.78581e-002 21Z+: -8.79541e-002 -3.67473e-003 22X+: 3.93064e-002 4.69476e-002 22Y+: -1.69132e-002 -1.04606e-002 22Z+: -1.85351e-002 1.33750e-003 23X+: 3.60396e-002 -2.46238e-002 23Z+: 3.57722e-003 3.64827e-003 23Y-: 1.92038e-002 6.65895e-002 #+end_example #+begin_src matlab mode3 = [... +1.34688e-001-j*6.65071e-002, +1.55316e-002+j*1.01277e-002, -5.88466e-002+j*1.14294e-002; +1.53934e-001-j*9.76990e-003, +7.17487e-003+j*1.11925e-002, -4.57205e-002+j*7.26573e-003; +1.61551e-001+j*1.65478e-002, -4.12527e-004-j*5.60909e-002, -9.00640e-003+j*3.50754e-003; +1.37298e-001-j*5.24661e-002, +1.19427e-003-j*5.39240e-002, -1.25915e-002+j*5.38133e-003; +2.43192e-001-j*3.17374e-002, -2.15730e-001-j*7.69941e-004, -1.56268e-001+j*1.44118e-002; -7.27705e-002-j*3.54943e-003, -2.47706e-001+j*2.66480e-003, -1.21590e-001+j*1.06054e-002; -7.25870e-002-j*4.62024e-003, +2.27073e-001-j*3.69315e-002, +1.22611e-001-j*6.67337e-003; +2.32731e-001-j*2.85516e-002, +2.35389e-001-j*3.81905e-002, +5.35574e-002+j*4.30394e-004; +2.64170e-001-j*2.67367e-002, -2.56227e-001+j*3.97957e-005, -1.95398e-001+j*2.23549e-002; -1.66953e-002-j*7.95698e-003, -2.66547e-001-j*2.17687e-002, +1.56278e-002+j*2.23786e-003; -3.42364e-002-j*9.30205e-003, +2.52340e-001-j*7.47237e-003, -9.51643e-004+j*3.64798e-003; +2.97574e-001+j*0.00000e+000, +2.23170e-001-j*1.37831e-002, +1.06266e-001+j*2.30324e-003; +2.67178e-002-j*4.15723e-004, +6.75423e-003-j*2.18428e-003, -1.69423e-002+j*3.12395e-003; -1.12283e-002+j*2.86316e-004, +5.08225e-003-j*2.14053e-003, +2.18339e-002-j*3.25204e-003; -1.17948e-002+j*6.82873e-004, +1.94914e-002-j*2.42151e-003, +2.68660e-003-j*2.92104e-004; +1.19490e-002+j*1.72236e-005, +1.83552e-002-j*2.71289e-003, -2.70914e-002+j*4.84164e-003; +1.00173e-002-j*5.80552e-005, -3.87262e-003-j*1.19607e-003, -8.53809e-003+j*1.48424e-003; -1.22262e-002+j*5.13096e-004, -5.73905e-003-j*1.07659e-003, +3.51730e-002-j*6.13814e-003; -1.43735e-002-j*4.78552e-004, +2.31135e-002-j*6.30554e-004, +1.80171e-003-j*1.98835e-004; +9.17792e-003+j*5.36661e-004, +2.18969e-002-j*5.81759e-004, -3.72117e-002+j*5.35813e-003; +3.38754e-002-j*3.38703e-002, -2.20843e-002+j*2.78581e-002, -8.79541e-002-j*3.67473e-003; +3.93064e-002+j*4.69476e-002, -1.69132e-002-j*1.04606e-002, -1.85351e-002+j*1.33750e-003; +3.60396e-002-j*2.46238e-002, -1.92038e-002-j*6.65895e-002, +3.57722e-003+j*3.64827e-003]; #+end_src *** Mode4 #+begin_src bash :results output :exports none :eval no-export sed -n 240,308p modal_analysis/modes_propres_narband.asc #+end_src #+RESULTS: #+begin_example 1X+: -1.02501e-001 -1.43802e-001 1Y+: -1.07971e-001 5.61418e-004 1Z+: 1.87145e-001 -1.03605e-001 2X+: -9.44764e-002 -1.36856e-001 2Y+: -1.04428e-001 5.27790e-003 2Z+: 1.60710e-001 -7.74212e-002 4X+: -9.17242e-002 -1.36656e-001 4Y+: -1.34249e-001 -1.03884e-002 4Z+: 1.92123e-001 -1.25627e-001 5X+: 1.05875e-002 -1.03886e-001 5Y+: -8.26338e-002 3.58498e-002 5Z+: 2.55819e-001 -6.94290e-003 6X+: -4.58970e-002 -1.33904e-002 6Y+: -9.41660e-002 4.99682e-002 6Z+: 1.28276e-001 4.59685e-002 7X+: -6.01521e-002 -1.30165e-002 7Y+: 2.56439e-003 -6.78141e-002 7Z+: 5.03428e-002 -1.59420e-001 8X+: -1.00895e-002 -8.80550e-002 8Y+: 1.26327e-002 -8.14444e-002 8Z+: 1.59506e-001 -2.05360e-001 9X+: -3.04658e-003 -1.57921e-001 9Y+: -8.23501e-002 4.82748e-002 9Z+: 1.69315e-001 1.22804e-002 10X+: -8.25875e-002 -7.31038e-002 10Y+: -1.08668e-001 3.56364e-002 10Z+: 8.28567e-002 -4.49596e-003 11X+: -1.06792e-001 -6.95394e-002 11Y+: 3.77195e-002 -7.65410e-002 11Z+: 8.00590e-003 -2.32461e-002 12X+: -4.84292e-002 -1.45790e-001 12Y+: 1.03862e-002 -7.31212e-002 12Z+: 1.78122e-001 -1.00939e-001 13X+: -3.49891e-002 -6.20969e-003 13Y+: -1.18504e-002 -1.94225e-002 13Z+: 4.13007e-002 7.67087e-003 14X+: -3.55795e-002 1.16708e-003 14Y+: -1.68128e-002 -1.82344e-002 14Z+: 3.92416e-002 -3.64434e-002 15X+: -3.45304e-002 3.78185e-003 15Y+: -7.62559e-003 -2.24241e-002 15Z+: 6.28286e-003 -1.32711e-002 16X+: -9.95646e-003 -6.04395e-003 16Y+: -8.73465e-003 -2.20807e-002 16Z+: 3.56946e-002 1.69231e-002 17X+: -9.32661e-003 -5.51944e-003 17Y+: -1.91087e-002 -9.09191e-003 17Z+: 4.04981e-002 8.38685e-004 18X+: -2.84456e-002 4.02762e-003 18Y+: -2.20044e-002 -8.86197e-003 18Z+: 4.43051e-002 -5.21033e-002 19X+: -3.27019e-002 3.59765e-003 19Y+: 2.93163e-003 -2.05064e-002 19Z+: -1.77289e-002 -1.29477e-002 20X+: -1.08474e-002 -5.78419e-003 20Y+: 3.86759e-003 -1.91642e-002 20Z+: 2.10135e-002 3.18051e-002 3X+: -9.11657e-002 -1.36611e-001 3Y+: -1.78165e-001 -3.47193e-002 3Z+: 2.37121e-001 -4.96494e-002 21X+: -1.34808e-002 -9.69121e-003 21Y+: 1.25218e-002 -2.71411e-002 21Z+: 2.76673e-001 0.00000e+000 22X+: 1.96744e-003 4.90797e-003 22Y+: -9.82609e-004 -3.31065e-002 22Z+: 1.79246e-001 -3.33238e-002 23X+: -1.08728e-002 -8.80278e-003 23Z+: 2.30814e-001 -8.33151e-002 23Y-: 1.15217e-002 4.01143e-002 #+end_example #+begin_src matlab mode4 = [... -1.02501e-001-j*1.43802e-001, -1.07971e-001+j*5.61418e-004, +1.87145e-001-j*1.03605e-001; -9.44764e-002-j*1.36856e-001, -1.04428e-001+j*5.27790e-003, +1.60710e-001-j*7.74212e-002; -9.11657e-002-j*1.36611e-001, -1.78165e-001-j*3.47193e-002, +2.37121e-001-j*4.96494e-002; -9.17242e-002-j*1.36656e-001, -1.34249e-001-j*1.03884e-002, +1.92123e-001-j*1.25627e-001; +1.05875e-002-j*1.03886e-001, -8.26338e-002+j*3.58498e-002, +2.55819e-001-j*6.94290e-003; -4.58970e-002-j*1.33904e-002, -9.41660e-002+j*4.99682e-002, +1.28276e-001+j*4.59685e-002; -6.01521e-002-j*1.30165e-002, +2.56439e-003-j*6.78141e-002, +5.03428e-002-j*1.59420e-001; -1.00895e-002-j*8.80550e-002, +1.26327e-002-j*8.14444e-002, +1.59506e-001-j*2.05360e-001; -3.04658e-003-j*1.57921e-001, -8.23501e-002+j*4.82748e-002, +1.69315e-001+j*1.22804e-002; -8.25875e-002-j*7.31038e-002, -1.08668e-001+j*3.56364e-002, +8.28567e-002-j*4.49596e-003; -1.06792e-001-j*6.95394e-002, +3.77195e-002-j*7.65410e-002, +8.00590e-003-j*2.32461e-002; -4.84292e-002-j*1.45790e-001, +1.03862e-002-j*7.31212e-002, +1.78122e-001-j*1.00939e-001; -3.49891e-002-j*6.20969e-003, -1.18504e-002-j*1.94225e-002, +4.13007e-002+j*7.67087e-003; -3.55795e-002+j*1.16708e-003, -1.68128e-002-j*1.82344e-002, +3.92416e-002-j*3.64434e-002; -3.45304e-002+j*3.78185e-003, -7.62559e-003-j*2.24241e-002, +6.28286e-003-j*1.32711e-002; -9.95646e-003-j*6.04395e-003, -8.73465e-003-j*2.20807e-002, +3.56946e-002+j*1.69231e-002; -9.32661e-003-j*5.51944e-003, -1.91087e-002-j*9.09191e-003, +4.04981e-002+j*8.38685e-004; -2.84456e-002+j*4.02762e-003, -2.20044e-002-j*8.86197e-003, +4.43051e-002-j*5.21033e-002; -3.27019e-002+j*3.59765e-003, +2.93163e-003-j*2.05064e-002, -1.77289e-002-j*1.29477e-002; -1.08474e-002-j*5.78419e-003, +3.86759e-003-j*1.91642e-002, +2.10135e-002+j*3.18051e-002; -1.34808e-002-j*9.69121e-003, +1.25218e-002-j*2.71411e-002, +2.76673e-001+j*0.00000e+000; +1.96744e-003+j*4.90797e-003, -9.82609e-004-j*3.31065e-002, +1.79246e-001-j*3.33238e-002; -1.08728e-002-j*8.80278e-003, -1.15217e-002-j*4.01143e-002, +2.30814e-001-j*8.33151e-002]; #+end_src *** All modes #+begin_src matlab mode_shapes = zeros(23, 3, 10); mode_shapes(:, :, 1) = [... -9.34637e-002+j*4.52445e-002, +2.33790e-001+j*1.41439e-003, -1.73754e-002+j*6.02449e-003; -7.42108e-002+j*3.91543e-002, +2.41566e-001-j*1.44869e-003, -5.99285e-003+j*2.10370e-003; -9.40720e-002+j*3.93724e-002, +2.52307e-001+j*0.00000e+000, -1.53864e-002-j*9.25720e-004; -1.02163e-001+j*2.79561e-002, +2.29048e-001+j*2.89782e-002, -2.85130e-002+j*1.77132e-004; -8.77132e-002+j*3.34081e-002, +2.14182e-001+j*2.14655e-002, -1.54521e-002+j*1.26682e-002; -7.90143e-002+j*2.42583e-002, +2.20669e-001+j*2.12738e-002, +4.60755e-002+j*4.96406e-003; -7.79654e-002+j*2.58385e-002, +2.06861e-001+j*3.48019e-002, -1.78311e-002-j*1.29704e-002; -8.49357e-002+j*3.55200e-002, +2.07470e-001+j*3.59745e-002, -7.66974e-002-j*3.19813e-003; -7.38565e-002+j*1.95146e-002, +2.17403e-001+j*2.01550e-002, -1.77073e-002-j*3.46414e-003; -7.77587e-002+j*2.36700e-002, +2.35654e-001-j*2.14540e-002, +7.94165e-002-j*2.45897e-002; -8.17972e-002+j*2.20583e-002, +2.20906e-001-j*4.30164e-003, -5.60520e-003+j*3.10187e-003; -8.64261e-002+j*3.66022e-002, +2.15000e-001-j*5.74661e-003, -1.22622e-001+j*4.11767e-002; -4.25169e-002+j*1.56602e-002, +5.31036e-002-j*1.73951e-002, -4.07130e-002+j*1.26884e-002; -3.85032e-002+j*1.29431e-002, +5.36716e-002-j*1.80868e-002, +1.00367e-001-j*3.48798e-002; -4.25524e-002+j*1.46363e-002, +5.19668e-002-j*1.69744e-002, +5.89747e-003-j*2.32428e-003; -4.31268e-002+j*1.38332e-002, +5.07545e-002-j*1.53045e-002, -1.04172e-001+j*3.17984e-002; -2.69757e-002+j*9.07955e-003, +3.07837e-002-j*9.44663e-003, -7.63502e-003+j*1.68203e-003; -3.00097e-002+j*9.23966e-003, +2.83585e-002-j*8.97747e-003, +1.52467e-001-j*4.78675e-002; -2.70223e-002+j*6.16478e-003, +3.06149e-002-j*6.25382e-003, -4.84888e-003+j*1.93970e-003; -2.90976e-002+j*7.13184e-003, +3.36738e-002-j*7.30875e-003, -1.66902e-001+j*3.93419e-002; -7.91940e-002+j*4.39648e-002, +2.04567e-001+j*9.49987e-003, -1.56087e-002+j*7.08838e-003; -1.01070e-001+j*3.13534e-002, +1.92270e-001+j*1.80423e-002, +2.93053e-003-j*1.97308e-003; -8.86455e-002+j*4.29906e-002, -3.38351e-002+j*1.81362e-003, +1.90862e-001+j*2.53414e-002]; mode_shapes(:, :, 2) = [... +7.56931e-002+j*3.61548e-002, +2.07574e-001+j*1.69205e-004, +1.29733e-002-j*6.78426e-004; +8.58732e-002+j*2.54470e-002, +2.07117e-001-j*1.31755e-003, -2.13788e-003-j*1.24974e-002; +8.17201e-002+j*2.36079e-002, +2.15927e-001+j*1.61300e-002, -5.48456e-004+j*2.55691e-002; +7.09825e-002+j*3.66313e-002, +2.09969e-001+j*1.11484e-002, +9.19478e-003+j*3.47272e-002; +6.23935e-002+j*1.02488e-002, +2.30687e-001-j*3.58416e-003, +3.27122e-002-j*5.85468e-002; +7.61163e-002-j*2.43630e-002, +2.26743e-001-j*1.15334e-002, -6.20205e-003-j*1.21742e-001; +8.01824e-002-j*1.94769e-002, +1.97485e-001+j*4.50105e-002, -2.21170e-002+j*9.77052e-002; +6.19294e-002+j*8.15075e-003, +2.03864e-001+j*4.45835e-002, +2.55133e-002+j*1.36137e-001; +4.38135e-002+j*7.30537e-002, +2.28426e-001-j*6.58868e-003, +1.16313e-002+j*5.09427e-004; +5.45770e-002+j*4.34251e-002, +2.50823e-001+j*0.00000e+000, -4.63460e-002-j*4.76868e-002; +5.50987e-002+j*4.26178e-002, +2.29394e-001+j*5.78236e-002, +1.90158e-002+j*1.09139e-002; +4.98867e-002+j*7.30190e-002, +2.07871e-001+j*4.57750e-002, +6.69433e-002+j*9.00315e-002; +2.48819e-002+j*3.03222e-002, -2.56046e-002-j*3.34132e-002, +2.13260e-002+j*2.58544e-002; +2.45706e-002+j*2.60221e-002, -2.57723e-002-j*3.35612e-002, -5.71282e-002-j*6.61562e-002; +2.68196e-002+j*2.83888e-002, -2.57263e-002-j*3.29627e-002, -2.11722e-003-j*3.37239e-003; +2.51442e-002+j*3.32558e-002, -2.54372e-002-j*3.25062e-002, +5.65780e-002+j*7.64142e-002; +1.62437e-002+j*1.94534e-002, -1.31293e-002-j*2.05924e-002, +1.05274e-003+j*3.59474e-003; +1.83431e-002+j*2.03836e-002, -1.16818e-002-j*1.86334e-002, -8.66632e-002-j*1.08216e-001; +1.62553e-002+j*1.79588e-002, -1.28857e-002-j*1.90512e-002, +6.25653e-003+j*4.97733e-003; +1.63830e-002+j*2.03943e-002, -1.48941e-002-j*2.11717e-002, +8.68045e-002+j*1.16491e-001; +6.79204e-002-j*5.55513e-002, +2.32871e-001+j*2.33389e-002, +1.34345e-002-j*2.31815e-002; +4.02414e-002-j*8.38957e-002, +2.35273e-001+j*2.73256e-002, -8.51632e-003-j*7.49635e-003; +6.18293e-002-j*5.99671e-002, +1.63533e-002+j*6.09161e-002, +2.37693e-001+j*4.34204e-002]; mode_shapes(:, :, 3) = [... +1.34688e-001-j*6.65071e-002, +1.55316e-002+j*1.01277e-002, -5.88466e-002+j*1.14294e-002; +1.53934e-001-j*9.76990e-003, +7.17487e-003+j*1.11925e-002, -4.57205e-002+j*7.26573e-003; +1.61551e-001+j*1.65478e-002, -4.12527e-004-j*5.60909e-002, -9.00640e-003+j*3.50754e-003; +1.37298e-001-j*5.24661e-002, +1.19427e-003-j*5.39240e-002, -1.25915e-002+j*5.38133e-003; +2.43192e-001-j*3.17374e-002, -2.15730e-001-j*7.69941e-004, -1.56268e-001+j*1.44118e-002; -7.27705e-002-j*3.54943e-003, -2.47706e-001+j*2.66480e-003, -1.21590e-001+j*1.06054e-002; -7.25870e-002-j*4.62024e-003, +2.27073e-001-j*3.69315e-002, +1.22611e-001-j*6.67337e-003; +2.32731e-001-j*2.85516e-002, +2.35389e-001-j*3.81905e-002, +5.35574e-002+j*4.30394e-004; +2.64170e-001-j*2.67367e-002, -2.56227e-001+j*3.97957e-005, -1.95398e-001+j*2.23549e-002; -1.66953e-002-j*7.95698e-003, -2.66547e-001-j*2.17687e-002, +1.56278e-002+j*2.23786e-003; -3.42364e-002-j*9.30205e-003, +2.52340e-001-j*7.47237e-003, -9.51643e-004+j*3.64798e-003; +2.97574e-001+j*0.00000e+000, +2.23170e-001-j*1.37831e-002, +1.06266e-001+j*2.30324e-003; +2.67178e-002-j*4.15723e-004, +6.75423e-003-j*2.18428e-003, -1.69423e-002+j*3.12395e-003; -1.12283e-002+j*2.86316e-004, +5.08225e-003-j*2.14053e-003, +2.18339e-002-j*3.25204e-003; -1.17948e-002+j*6.82873e-004, +1.94914e-002-j*2.42151e-003, +2.68660e-003-j*2.92104e-004; +1.19490e-002+j*1.72236e-005, +1.83552e-002-j*2.71289e-003, -2.70914e-002+j*4.84164e-003; +1.00173e-002-j*5.80552e-005, -3.87262e-003-j*1.19607e-003, -8.53809e-003+j*1.48424e-003; -1.22262e-002+j*5.13096e-004, -5.73905e-003-j*1.07659e-003, +3.51730e-002-j*6.13814e-003; -1.43735e-002-j*4.78552e-004, +2.31135e-002-j*6.30554e-004, +1.80171e-003-j*1.98835e-004; +9.17792e-003+j*5.36661e-004, +2.18969e-002-j*5.81759e-004, -3.72117e-002+j*5.35813e-003; +3.38754e-002-j*3.38703e-002, -2.20843e-002+j*2.78581e-002, -8.79541e-002-j*3.67473e-003; +3.93064e-002+j*4.69476e-002, -1.69132e-002-j*1.04606e-002, -1.85351e-002+j*1.33750e-003; +3.60396e-002-j*2.46238e-002, +3.57722e-003+j*3.64827e-003, -1.92038e-002-j*6.65895e-002]; mode_shapes(:, :, 4) = [... -1.02501e-001-j*1.43802e-001, -1.07971e-001+j*5.61418e-004, +1.87145e-001-j*1.03605e-001; -9.44764e-002-j*1.36856e-001, -1.04428e-001+j*5.27790e-003, +1.60710e-001-j*7.74212e-002; -9.11657e-002-j*1.36611e-001, -1.78165e-001-j*3.47193e-002, +2.37121e-001-j*4.96494e-002; -9.17242e-002-j*1.36656e-001, -1.34249e-001-j*1.03884e-002, +1.92123e-001-j*1.25627e-001; +1.05875e-002-j*1.03886e-001, -8.26338e-002+j*3.58498e-002, +2.55819e-001-j*6.94290e-003; -4.58970e-002-j*1.33904e-002, -9.41660e-002+j*4.99682e-002, +1.28276e-001+j*4.59685e-002; -6.01521e-002-j*1.30165e-002, +2.56439e-003-j*6.78141e-002, +5.03428e-002-j*1.59420e-001; -1.00895e-002-j*8.80550e-002, +1.26327e-002-j*8.14444e-002, +1.59506e-001-j*2.05360e-001; -3.04658e-003-j*1.57921e-001, -8.23501e-002+j*4.82748e-002, +1.69315e-001+j*1.22804e-002; -8.25875e-002-j*7.31038e-002, -1.08668e-001+j*3.56364e-002, +8.28567e-002-j*4.49596e-003; -1.06792e-001-j*6.95394e-002, +3.77195e-002-j*7.65410e-002, +8.00590e-003-j*2.32461e-002; -4.84292e-002-j*1.45790e-001, +1.03862e-002-j*7.31212e-002, +1.78122e-001-j*1.00939e-001; -3.49891e-002-j*6.20969e-003, -1.18504e-002-j*1.94225e-002, +4.13007e-002+j*7.67087e-003; -3.55795e-002+j*1.16708e-003, -1.68128e-002-j*1.82344e-002, +3.92416e-002-j*3.64434e-002; -3.45304e-002+j*3.78185e-003, -7.62559e-003-j*2.24241e-002, +6.28286e-003-j*1.32711e-002; -9.95646e-003-j*6.04395e-003, -8.73465e-003-j*2.20807e-002, +3.56946e-002+j*1.69231e-002; -9.32661e-003-j*5.51944e-003, -1.91087e-002-j*9.09191e-003, +4.04981e-002+j*8.38685e-004; -2.84456e-002+j*4.02762e-003, -2.20044e-002-j*8.86197e-003, +4.43051e-002-j*5.21033e-002; -3.27019e-002+j*3.59765e-003, +2.93163e-003-j*2.05064e-002, -1.77289e-002-j*1.29477e-002; -1.08474e-002-j*5.78419e-003, +3.86759e-003-j*1.91642e-002, +2.10135e-002+j*3.18051e-002; -1.34808e-002-j*9.69121e-003, +1.25218e-002-j*2.71411e-002, +2.76673e-001+j*0.00000e+000; +1.96744e-003+j*4.90797e-003, -9.82609e-004-j*3.31065e-002, +1.79246e-001-j*3.33238e-002; -1.08728e-002-j*8.80278e-003, +2.30814e-001-j*8.33151e-002, -1.15217e-002-j*4.01143e-002]; mode_shapes(:, :, 5) = [... +3.55328e-001+j*0.00000e+000, +6.67612e-002+j*5.48020e-002, +3.03237e-002+j*5.29473e-004; +3.16372e-001-j*3.84091e-002, +5.27472e-002+j*5.88474e-002, +2.86305e-002-j*1.74805e-002; +3.00803e-001-j*1.36309e-002, +7.04883e-002+j*1.24492e-001, +7.23329e-002+j*2.33738e-002; +3.32527e-001-j*2.26876e-004, +9.82263e-002+j*1.20397e-001, +9.86580e-002+j*3.55048e-002; +4.96498e-002+j*2.31008e-002, +9.79716e-002+j*1.42500e-002, -1.15121e-001-j*3.59085e-002; +1.41924e-001+j*2.16209e-002, +8.76030e-002+j*6.39650e-003, -8.75727e-002-j*3.71261e-002; +1.41522e-001+j*1.96964e-002, -1.01959e-001+j*4.10992e-004, +2.14744e-001+j*4.91249e-002; +4.33170e-002+j*1.84481e-002, -8.24640e-002+j*3.42475e-003, +2.32281e-001+j*5.40699e-002; +1.47782e-001+j*4.93091e-002, +8.75397e-002+j*7.75318e-004, -6.80833e-002-j*9.72902e-003; +2.00055e-001+j*3.81689e-002, +8.06886e-002+j*1.19008e-002, -1.40810e-002-j*1.12625e-002; +1.96526e-001+j*3.87737e-002, -8.42766e-002+j*9.20233e-003, +1.02951e-001+j*3.37680e-002; +1.25035e-001+j*4.67796e-002, -8.81307e-002+j*5.81039e-004, +7.94320e-002+j*2.19736e-002; +2.03946e-002+j*2.50162e-002, +7.93788e-002-j*1.40794e-002, -4.15470e-002+j*4.95855e-004; +6.56876e-002-j*2.14826e-002, +8.21523e-002-j*1.94792e-002, +3.44089e-002+j*2.32727e-003; +5.98960e-002-j*2.17160e-002, +4.74914e-002+j*2.31386e-002, +3.58704e-002+j*1.13591e-003; +1.91580e-002+j*2.15329e-002, +5.14631e-002+j*1.70019e-002, -3.90820e-002-j*9.20853e-003; +8.98876e-003+j*2.56390e-002, +7.93497e-002-j*2.34846e-002, -5.61039e-002-j*3.03271e-003; +5.72051e-002-j*2.29477e-002, +8.76985e-002-j*2.73606e-002, +5.13896e-002+j*8.58341e-003; +6.71099e-002-j*2.67997e-002, +1.80119e-002+j*4.02601e-002, +6.40092e-002+j*7.11273e-003; +1.48349e-002+j*2.57533e-002, +1.35189e-002+j*3.69351e-002, -3.31024e-002-j*1.65471e-002; +2.52156e-002-j*4.65138e-003, +7.94380e-004+j*1.56790e-002, +1.01067e-002-j*3.35468e-003; +3.30841e-002+j*6.73531e-003, +1.69827e-004+j*9.48996e-003, +8.16746e-002+j*1.39885e-002; +2.91404e-002-j*2.43138e-003, +1.38761e-001+j*3.67410e-002, -4.17833e-003+j*8.35629e-004]; mode_shapes(:, :, 6) = [... +3.76055e-001-j*2.00477e-002, -2.18528e-002-j*2.46738e-001, -2.01369e-002-j*2.48481e-002; +3.73870e-001-j*6.46353e-002, -3.66940e-002-j*2.49113e-001, -9.20410e-002-j*2.72520e-002; +3.71070e-001-j*4.42411e-003, +5.79596e-002-j*2.58311e-001, +2.62275e-003+j*9.26708e-003; +3.82440e-001+j*0.00000e+000, +3.30266e-002-j*2.08256e-001, +7.22558e-002+j*1.47204e-002; -3.73785e-003+j*3.81592e-002, +4.74482e-002+j*5.41354e-002, -5.78227e-002-j*8.70215e-002; +6.08721e-002+j*7.20835e-002, +5.73258e-002+j*5.38176e-002, -3.34121e-002-j*8.54509e-002; +5.96968e-002+j*8.31733e-002, -7.64618e-002-j*4.19504e-002, +3.48953e-002+j*4.79635e-002; -1.41532e-003+j*3.79318e-002, -6.79853e-002-j*3.88324e-002, +6.64542e-002+j*9.20955e-002; +2.96044e-002+j*7.83613e-002, +4.91378e-002+j*4.74080e-002, -2.15758e-002-j*5.51292e-002; +3.52566e-002+j*1.00976e-001, +4.16302e-002+j*5.95793e-002, -1.83944e-002-j*5.09313e-002; +3.49287e-002+j*1.10404e-001, -5.46487e-002-j*3.95054e-002, +1.88545e-002+j*3.82156e-002; +1.70173e-002+j*8.68762e-002, -5.52511e-002-j*4.46179e-002, +7.63555e-003+j*6.17646e-002; -8.22469e-004-j*1.81402e-002, -1.96193e-003-j*2.76646e-002, -1.97033e-003+j*1.06615e-002; -1.16438e-003-j*2.68725e-002, -1.11909e-003-j*2.38894e-002, +1.50332e-003+j*1.31644e-002; -1.77060e-003-j*2.77807e-002, -1.01121e-003-j*2.37147e-002, -2.45798e-003-j*1.41886e-002; -1.85500e-003-j*2.20304e-002, -4.77462e-004-j*2.19932e-002, -6.85097e-003-j*7.04903e-003; -6.77197e-004-j*1.56812e-002, -2.19412e-003-j*2.65284e-002, +3.96653e-004+j*2.95178e-002; -1.14513e-003-j*1.99551e-002, -2.35828e-003-j*2.88909e-002, +3.70211e-003+j*2.02423e-002; -1.16798e-003-j*2.31638e-002, -4.75969e-004-j*2.23413e-002, -2.07031e-003-j*3.41651e-002; -1.99807e-004-j*2.09301e-002, -2.40560e-004-j*1.78264e-002, -9.91090e-003-j*3.12664e-002; +9.69966e-003+j*2.95222e-002, -1.19231e-002+j*5.23077e-003, -9.79113e-003-j*4.50715e-002; +1.36018e-002+j*2.24850e-002, -9.79427e-003+j*9.84679e-003, +2.18456e-002-j*1.57858e-002; +1.09214e-002+j*2.93115e-002, +2.43859e-002+j*3.35745e-002, -1.07735e-002+j*1.21178e-002]; mode_shapes(:, :, 7) = [... +4.18739e-001-j*2.21696e-002, +6.52636e-002-j*1.29498e-001, -1.90337e-002+j*9.61505e-003; +4.27024e-001-j*3.03566e-002, +4.22791e-002-j*1.32892e-001, -1.65941e-002+j*2.17638e-002; +4.66694e-001+j*1.38778e-017, +7.51273e-002-j*1.57468e-001, -2.91618e-002+j*4.11516e-002; +4.18867e-001+j*2.39590e-002, +7.51007e-002-j*1.13378e-001, -7.11238e-003+j*2.72692e-002; -3.26299e-002+j*2.12910e-002, -4.80710e-002+j*8.82799e-002, +5.82558e-002-j*9.16159e-002; -4.61031e-002+j*8.08300e-002, -2.80650e-002+j*7.37925e-002, +3.54903e-002-j*3.02341e-002; -5.14543e-002+j*7.23863e-002, +1.91387e-002-j*7.65710e-002, -3.92182e-002+j*5.06089e-002; -3.35647e-002+j*2.16695e-002, +1.88798e-002-j*6.19822e-002, -5.08508e-002+j*8.78653e-002; -4.93941e-002+j*6.46940e-002, -2.90637e-002+j*7.66360e-002, +5.24626e-002-j*6.16359e-002; -5.85364e-002+j*5.59044e-002, -2.63581e-002+j*5.43466e-002, +2.90174e-002-j*3.98049e-002; -6.07978e-002+j*5.54585e-002, +3.16828e-002-j*8.54810e-002, -3.44914e-002-j*4.03684e-003; -6.18120e-002+j*7.90821e-002, +2.38807e-002-j*5.62399e-002, -5.04609e-002+j*3.27008e-002; +1.57670e-002-j*3.20728e-003, -5.98007e-003-j*3.10416e-003, -1.67104e-003-j*1.59089e-003; +1.79638e-002-j*7.40235e-003, -8.20109e-003-j*2.36675e-004, -1.69812e-003+j*1.67596e-003; +1.87809e-002-j*8.55724e-003, -2.81069e-003-j*3.03393e-003, -5.71319e-003-j*2.26161e-003; +1.88829e-002-j*8.50228e-003, -5.28373e-003-j*2.52386e-003, -1.48737e-002-j*5.08140e-003; +2.28380e-002-j*7.51769e-003, -7.57170e-003-j*2.75553e-003, -6.10380e-003+j*5.15562e-003; +2.08600e-002-j*6.11732e-003, -4.73105e-003-j*3.30979e-003, -2.51369e-003+j*5.42921e-003; +2.00008e-002-j*5.92617e-003, -3.50988e-003-j*4.55853e-003, -5.43701e-003-j*6.57229e-003; +2.28149e-002-j*8.22905e-003, -4.83167e-003-j*3.10509e-003, -2.10958e-002-j*1.33421e-002; -1.83145e-002+j*2.76844e-002, +5.61668e-003-j*1.41226e-002, +2.20876e-002-j*2.27446e-002; -5.42112e-003+j*2.22444e-002, -4.20426e-005-j*8.78901e-003, +5.54714e-003+j*2.71564e-002; -1.70108e-002+j*2.83751e-002, -1.44473e-002+j*4.50880e-002, -5.26736e-003-j*5.75716e-003]; mode_shapes(:, :, 8) = [... -1.40928e-001+j*1.28570e-001, +2.95471e-001-j*1.35692e-001, -6.61656e-002+j*2.95705e-002; -1.56673e-001+j*5.19030e-002, +3.08231e-001-j*1.41453e-001, -9.70918e-002+j*4.95018e-002; -1.72505e-001+j*2.26273e-002, +3.97224e-001-j*2.77556e-017, -1.29223e-001+j*4.47412e-002; -1.69978e-001+j*1.16284e-001, +3.37516e-001+j*7.69873e-003, -8.49480e-002+j*2.17071e-002; +5.38303e-004-j*3.59916e-003, -6.72455e-002-j*2.06230e-002, +2.66448e-002+j*4.10505e-002; -7.96526e-003-j*7.76851e-002, -2.63530e-002-j*3.75474e-002, -1.05984e-001+j*9.32474e-002; +4.72518e-002-j*1.00199e-001, -5.50664e-002+j*1.50246e-001, -8.50976e-002+j*2.78531e-002; +7.58419e-003-j*8.61594e-003, -9.02101e-002+j*1.58224e-001, +6.03081e-002-j*1.24162e-001; +2.99027e-002-j*5.27128e-002, -8.80464e-002-j*2.99113e-004, +9.02851e-002-j*3.99771e-002; +3.23132e-002-j*5.87278e-002, +3.81174e-002-j*3.69992e-002, +1.16643e-002+j*6.21068e-002; +5.79795e-002-j*8.33565e-002, -1.22448e-003+j*8.81473e-002, +8.40150e-002-j*1.16264e-002; +1.35399e-002-j*3.80303e-002, -9.58200e-002+j*1.46531e-001, +1.06769e-001-j*8.97034e-002; +5.34299e-004+j*1.35179e-002, +8.71327e-004-j*6.41448e-003, +3.33208e-002-j*2.12545e-002; -2.79263e-004+j*5.08578e-003, -1.45476e-003-j*7.65161e-003, +6.98235e-002-j*2.45395e-002; -9.22822e-005+j*7.03205e-003, -5.62836e-003-j*2.79991e-003, +3.99717e-002-j*8.30891e-003; +1.87833e-002+j*3.26772e-003, -4.86774e-003-j*4.32297e-003, +5.97375e-002-j*1.77542e-002; +1.14169e-002+j*5.70930e-003, -8.23489e-003-j*4.53684e-003, +3.14016e-002-j*2.50637e-002; +1.15995e-003+j*5.79180e-003, -6.69740e-003-j*4.66433e-003, +8.17695e-002-j*2.78384e-002; +5.23838e-004+j*6.46432e-003, +3.36104e-003-j*4.42572e-003, +3.64589e-002+j*5.74796e-004; +1.57042e-002+j*5.94177e-003, -1.49670e-003-j*4.22955e-003, +8.68520e-002-j*1.43981e-002; +8.00706e-004-j*2.91734e-002, +1.20708e-002+j*4.24081e-002, -5.91796e-002+j*4.00346e-002; -1.91799e-003-j*1.37294e-002, +9.85285e-003+j*3.17934e-002, -1.78010e-001+j*7.91267e-002; +3.57271e-003-j*3.09959e-002, -5.77781e-002-j*1.27957e-002, +1.31025e-002+j*1.92303e-002]; mode_shapes(:, :, 9) = [... +1.58897e-002+j*3.23763e-002, -1.23332e-001-j*3.20376e-002, +6.78860e-002-j*1.28743e-002; +5.67179e-003+j*4.26539e-002, -1.20726e-001-j*4.15603e-002, +7.66846e-002-j*1.24290e-002; +2.24198e-002+j*3.45953e-002, -1.03213e-001-j*4.97049e-002, +5.49175e-002-j*5.50883e-003; +2.68792e-002+j*2.97222e-002, -1.17598e-001-j*3.13791e-002, +5.59736e-002-j*1.71122e-002; +1.39733e-002-j*1.56260e-002, +1.43952e-001+j*2.28119e-002, -4.56377e-003+j*4.88790e-002; -2.18507e-002-j*1.25664e-002, +6.15387e-002-j*6.31793e-003, +3.05342e-002+j*3.24595e-002; -7.85412e-003-j*1.85600e-002, +1.25733e-001+j*1.77063e-002, +5.34635e-002+j*4.72260e-003; -1.10454e-002-j*2.13217e-002, +1.26440e-001+j*1.96001e-002, -5.62624e-002-j*1.07192e-002; +5.84467e-003-j*4.07134e-002, +5.16711e-003+j*4.70857e-002, -1.93010e-001+j*6.79213e-003; +5.31962e-002-j*1.11322e-002, +3.23294e-001-j*2.12981e-002, +2.14310e-001+j*4.85898e-003; -2.44580e-002-j*1.33220e-002, +4.08800e-001+j*2.09082e-002, +5.11454e-001+j*0.00000e+000; -2.51332e-002-j*1.42719e-003, +8.97105e-002+j*4.85852e-002, -1.27426e-001-j*9.59723e-003; -2.08176e-003+j*1.37185e-002, -3.99530e-002+j*2.11895e-002, -1.17813e-001+j*7.60972e-002; -1.34824e-002+j*7.11258e-003, -4.19473e-002+j*1.83590e-002, -2.07198e-002-j*2.51991e-002; -6.84747e-003+j*8.45921e-003, -3.33872e-002+j*1.71496e-002, +6.99867e-002-j*6.93158e-002; -2.64313e-002+j*5.08903e-003, -3.03569e-002+j*1.29946e-002, -1.39115e-001+j*5.72459e-002; -2.90186e-002+j*1.48257e-002, -5.55429e-002+j*2.74156e-002, -1.62035e-001+j*8.04187e-002; -2.05855e-002+j*1.11922e-002, -6.58789e-002+j*3.20524e-002, -1.02263e-002-j*4.24087e-002; -1.40204e-002+j*8.01102e-003, -5.72647e-002+j*2.37484e-002, +1.75053e-001-j*9.63667e-002; -3.50818e-002+j*1.41152e-002, -5.19701e-002+j*2.31951e-002, -1.15951e-001+j*2.91582e-002; -5.78005e-003-j*7.05841e-003, +8.29016e-002+j*1.36984e-002, +4.03470e-003+j*4.03325e-002; -1.39928e-002-j*1.14088e-002, +8.05288e-002+j*1.51031e-002, +1.12255e-002+j*3.21224e-002; -1.02276e-002-j*8.35724e-003, -4.89246e-003+j*1.67800e-002, +7.80514e-002+j*1.53467e-002]; mode_shapes(:, :, 10) = [... +3.33349e-002-j*4.89606e-003, -8.67138e-002-j*1.69402e-002, +2.87366e-002-j*1.66842e-002; +2.95730e-002-j*6.10477e-004, -9.24590e-002-j*1.92562e-002, +5.21162e-002-j*1.31811e-002; +3.26966e-002+j*1.03975e-002, -8.55682e-002-j*4.71847e-002, +3.99404e-002+j*8.59358e-003; +3.45452e-002-j*3.05951e-003, -7.73823e-002-j*2.32199e-002, +2.30960e-002-j*7.49928e-003; -3.72461e-003-j*5.40336e-003, +1.80151e-001-j*1.42898e-002, -8.63921e-003+j*1.95638e-002; -1.11285e-002-j*2.22175e-003, +6.92355e-002-j*1.24144e-002, +8.02097e-002-j*6.81531e-003; -2.99885e-002-j*4.21951e-004, +8.19709e-002+j*1.22484e-002, +3.97531e-002+j*1.33874e-002; -1.59231e-002-j*3.96929e-003, +9.31295e-002+j*9.75532e-003, -4.01947e-002-j*5.17841e-003; -7.32828e-003-j*2.93496e-002, +4.39909e-002+j*1.25298e-002, -8.87525e-002+j*2.05359e-002; +8.20167e-002+j*6.86693e-004, +4.25475e-001-j*2.36494e-002, +3.37034e-001-j*2.44199e-002; -2.68694e-002+j*3.82921e-003, +4.79292e-001+j*1.35903e-002, +5.06762e-001+j*0.00000e+000; +1.40565e-002-j*5.41957e-003, +1.17563e-001+j*2.50398e-002, -5.97219e-002+j*5.92813e-004; +2.30939e-002+j*1.16755e-002, +4.11136e-003+j*1.65726e-002, +2.41863e-002+j*5.06658e-002; -4.92960e-003+j*9.24082e-003, -5.44667e-003+j*1.41983e-002, -3.73537e-002-j*1.87263e-002; +9.68682e-003+j*1.11791e-002, -5.13436e-003+j*1.29205e-002, -4.88765e-002-j*4.97821e-002; -1.66711e-003+j*1.03280e-002, +9.57955e-004+j*1.28350e-002, +3.30268e-002+j*5.44211e-002; +5.90540e-003+j*1.67113e-002, +1.34280e-002+j*2.62111e-002, +4.38613e-002+j*7.17028e-002; +4.97752e-003+j*1.47634e-002, +1.56773e-002+j*3.16026e-002, -5.27493e-002-j*3.38315e-002; +2.83485e-003+j*1.14816e-002, +9.80676e-003+j*2.51504e-002, -6.78645e-002-j*9.90875e-002; +5.62294e-003+j*1.84035e-002, +1.03717e-002+j*2.37801e-002, +2.58497e-002+j*3.75352e-002; -8.75236e-003-j*4.71723e-003, +6.99107e-002+j*1.51894e-002, +3.46273e-002+j*1.48547e-002; -1.72822e-002-j*8.75192e-003, +6.96759e-002+j*1.59783e-002, +8.07917e-002+j*1.97809e-002; -1.29601e-002-j*5.61834e-003, +1.76126e-002+j*4.62761e-003, +6.64667e-002+j*1.61199e-002]; #+end_src ** Define a point for each solid body We define accelerometer indices used to define the motion of each solid body (2 3-axis accelerometer are enough). #+begin_src matlab stages = [17, 19; % Bottom Granite 13, 15; % Top Granite 9, 11; % Ty 5, 7; % Ry 21, 22; % Spindle 1, 3]; % Hexapod #+end_src We define the origin point ${}^AO_B$ of the solid body $\{B\}$. Here we choose the middle point between the two accelerometers. This could be define differently (for instance by choosing the center of mass). #+begin_src matlab AOB = zeros(3, size(stages, 1)); for i = 1:size(stages, 1) AOB(:, i) = mean(positions(stages(i, :), 1:3))'; end #+end_src Then we compute the positions of the sensors with respect to the previously defined origin for the frame $\{B\}$: ${}^BP_1$ and ${}^BP_2$. #+begin_src matlab BP1 = zeros(3, size(stages, 1)); BP2 = zeros(3, size(stages, 1)); for i = 1:size(stages, 1) BP1(:, i) = positions(stages(i, 1), 1:3)' - AOB(:, i); BP2(:, i) = positions(stages(i, 2), 1:3)' - AOB(:, i); end #+end_src Let's define one absolute frame $\{A\}$ and one frame $\{B\}$ fixed w.r.t. the solid body. We note ${}^AO_B$ the position of origin of $\{B\}$ expressed in $\{A\}$. We are measuring with the accelerometers the absolute motion of points $P_1$ and $P_2$: ${}^Av_{P_1}$ and ${}^Av_{P_2}$. Let's note ${}^BP_1$ and ${}^BP_2$ the (known) coordinates of $P_1$ and $P_2$ expressed in the frame $\{B\}$. Then we have: \begin{align} {}^Av_{P_1} &= {}^Av_{O_B} + {}^A\Omega^\times {}^AR_B {}^BP_1 \\ {}^Av_{P_2} &= {}^Av_{O_B} + {}^A\Omega^\times {}^AR_B {}^BP_2 \end{align} And we obtain \begin{align} {}^A\Omega^\times {}^AR_B &= \left( {}^Av_{P_2} - {}^Av_{P_1} \right) \left( {}^BP_2 - {}^BP_1 \right)^{-1}\\ {}^Av_{O_B} &= {}^Av_{P_1} - \left( {}^Av_{P_2} - {}^Av_{P_1} \right) \left( {}^BP_2 - {}^BP_1 \right)^{-1} {}^BP_1 \end{align} #+begin_src matlab AVOB = zeros(3, size(stages, 1)); ARB = zeros(3, 3, size(stages, 1)); for i = 1:size(stages, 1) AVOB(:, i) = mode1(stages(i, 1), :)' - (mode1(stages(i, 2), :)' - mode1(stages(i, 1), :)')*pinv(BP2(:, i) - BP1(:, i))*BP1(:, i); ARB(:, :, i) = (mode1(stages(i, 2), :)' - mode1(stages(i, 1), :)')*pinv(BP2(:, i) - BP1(:, i)); end #+end_src ** Argand Diagram For mode 1 #+begin_src matlab figure; hold on; for i=1:size(mode1, 1) plot([0, real(mode1(i, 1))], [0, imag(mode1(i, 1))], '-k') plot([0, real(mode1(i, 2))], [0, imag(mode1(i, 2))], '-k') plot([0, real(mode1(i, 3))], [0, imag(mode1(i, 3))], '-k') % plot([0, real(mode2(i, 1))], [0, imag(mode2(i, 1))], '-r') % plot([0, real(mode2(i, 2))], [0, imag(mode2(i, 2))], '-r') % plot([0, real(mode2(i, 3))], [0, imag(mode2(i, 3))], '-r') % plot([0, real(mode3(i, 1))], [0, imag(mode3(i, 1))], '-b') % plot([0, real(mode3(i, 2))], [0, imag(mode3(i, 2))], '-b') % plot([0, real(mode3(i, 3))], [0, imag(mode3(i, 3))], '-b') end for i=1:size(AVOB, 2) plot([0, real(AVOB(1, i))], [0, imag(AVOB(1, i))], '-r') plot([0, real(AVOB(2, i))], [0, imag(AVOB(2, i))], '-r') plot([0, real(AVOB(3, i))], [0, imag(AVOB(3, i))], '-r') end % ang=0:0.01:2*pi; % radius1 = max(max(sqrt(real(mode1).^2+imag(mode1).^2))); % plot(radius1*cos(ang), radius1*sin(ang), '-k'); % radius2 = max(max(sqrt(real(mode2).^2+imag(mode2).^2))); % plot(radius2*cos(ang), radius2*sin(ang), '-r'); % radius3 = max(max(sqrt(real(mode3).^2+imag(mode3).^2))); % plot(radius3*cos(ang), radius3*sin(ang), '-b'); hold off; axis manual equal #+end_src ** TEST: animate first mode #+begin_src matlab figure; hold on; fill3(positions(1:4, 1), positions(1:4, 2), positions(1:4, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(5:8, 1), positions(5:8, 2), positions(5:8, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(9:12, 1), positions(9:12, 2), positions(9:12, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(13:16, 1), positions(13:16, 2), positions(13:16, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(17:20, 1), positions(17:20, 2), positions(17:20, 3), 'k', 'FaceAlpha', 0.5) fill3(positions(21:23, 1), positions(21:23, 2), positions(21:23, 3), 'k', 'FaceAlpha', 0.5) hold off; #+end_src #+NAME: fig:mode_shapes #+HEADER: :tangle no :exports results :results value file raw replace :noweb yes #+begin_src matlab rec = polyshape([-2 -2 2 2],[-3 3 3 -3]); h = figure; filename = 'figs/mode_shapes.gif'; n = 20; for i = 1:n axis manual equal Dm = real(V(1:3, 5)*cos(2*pi*i/n)); rec_i = rotate(rec, 180/pi*Dm(3)); rec_i = translate(rec_i, 10*Dm(1), 10*Dm(2)); plot(rec_i); xlim([-3, 3]); ylim([-4, 4]); set(h, 'visible', 'off'); set(h, 'pos', [0, 0, 500, 500]); drawnow; % Capture the plot as an image frame = getframe(h); im = frame2im(frame); [imind,cm] = rgb2ind(im,256); % Write to the GIF File if i == 1 imwrite(imind,cm,filename,'gif','DelayTime',0.1,'Loopcount',inf); else imwrite(imind,cm,filename,'gif','DelayTime',0.1,'WriteMode','append'); end end set(h, 'visible', 'on'); ans = filename; #+end_src ** From 6 translations to translation + rotation Let's define one absolute frame $\{A\}$ and one frame $\{B\}$ fixed w.r.t. the solid body. We note ${}^AO_B$ the position of origin of $\{B\}$ expressed in $\{A\}$. We are measuring with the accelerometers the absolute motion of points $P_1$ and $P_2$: ${}^AP_1$ and ${}^AP_2$. Let's note ${}^BP_1$ and ${}^BP_2$ the (known) coordinates of $P_1$ and $P_2$ expressed in the frame $\{B\}$. Then we have: \begin{align} {}^AP_1 &= {}^AO_B + {}^AR_B {}^BP_1 \\ {}^AP_2 &= {}^AO_B + {}^AR_B {}^BP_2 \end{align} And we obtain \begin{align} {}^AR_B &= \left( {}^AP_2 - {}^AP_1 \right) \left( {}^BP_2 - {}^BP_1 \right)^{-1}\\ {}^AO_B &= {}^Av_{P_1} - \left( {}^AP_2 - {}^AP_1 \right) \left( {}^BP_2 - {}^BP_1 \right)^{-1} {}^BP_1 \end{align} * Problem with AirLoc System 4 Airloc Levelers are used for the granite (figure [[fig:airloc]]). #+name: fig:airloc #+caption: AirLoc used for the granite (2120-KSKC) #+attr_html: :width 500px [[file:img/airloc/IMG_20190618_155522.jpg]] They are probably *not well leveled* so that could explain the first modes at 11Hz and 17Hz. * Spatial Mode Extraction