% Matlab Init :noexport:ignore: current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/'; %% Go to current Directory cd(current_dir); %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Initialize ans with org-babel ans = 0; % Load data % We first load the data for the three axis. z = load('mat/data_001.mat', 't', 'x1', 'x2'); east = load('mat/data_002.mat', 't', 'x1', 'x2'); north = load('mat/data_003.mat', 't', 'x1', 'x2'); % Compare PSD % The PSD for each axis of the two geophones are computed. [pz1, fz] = pwelch(z.x1, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1))); [pz2, ~] = pwelch(z.x2, hanning(ceil(length(z.x2)/100)), [], [], 1/(z.t(2)-z.t(1))); [pe1, fe] = pwelch(east.x1, hanning(ceil(length(east.x1)/100)), [], [], 1/(east.t(2)-east.t(1))); [pe2, ~] = pwelch(east.x2, hanning(ceil(length(east.x2)/100)), [], [], 1/(east.t(2)-east.t(1))); [pn1, fn] = pwelch(north.x1, hanning(ceil(length(north.x1)/100)), [], [], 1/(north.t(2)-north.t(1))); [pn2, ~] = pwelch(north.x2, hanning(ceil(length(north.x2)/100)), [], [], 1/(north.t(2)-north.t(1))); % We compare them. The result is shown on figure [[fig:compare_axis_psd]]. figure; hold on; plot(fz, sqrt(pz1), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', 'z'); plot(fz, sqrt(pz2), '--', 'Color', [0 0.4470 0.7410], 'HandleVisibility', 'off'); plot(fe, sqrt(pe1), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', 'east'); plot(fe, sqrt(pe2), '--', 'Color', [0.8500 0.3250 0.0980], 'HandleVisibility', 'off'); plot(fn, sqrt(pn1), '-', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', 'north'); plot(fn, sqrt(pn2), '--', 'Color', [0.9290 0.6940 0.1250], 'HandleVisibility', 'off'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]'); legend('Location', 'northeast'); xlim([0, 500]); % Compare TF % The transfer functions from one geophone to the other are also computed for each axis. % The result is shown on figure [[fig:compare_tf_axis]]. [Tz, fz] = tfestimate(z.x1, z.x2, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1))); [Te, fe] = tfestimate(east.x1, east.x2, hanning(ceil(length(east.x1)/100)), [], [], 1/(east.t(2)-east.t(1))); [Tn, fn] = tfestimate(north.x1, north.x2, hanning(ceil(length(north.x1)/100)), [], [], 1/(north.t(2)-north.t(1))); figure; ax1 = subplot(2, 1, 1); hold on; plot(fz, abs(Tz), 'DisplayName', 'z'); plot(fe, abs(Te), 'DisplayName', 'east'); plot(fn, abs(Tn), 'DisplayName', 'north'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude'); legend('Location', 'southwest'); ax2 = subplot(2, 1, 2); hold on; plot(fz, mod(180+180/pi*phase(Tz), 360)-180); plot(fe, mod(180+180/pi*phase(Te), 360)-180); plot(fn, mod(180+180/pi*phase(Tn), 360)-180); hold off; set(gca, 'xscale', 'log'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); xlabel('Frequency [Hz]'); ylabel('Phase'); linkaxes([ax1,ax2],'x'); xlim([1, 500]);