#+TITLE:Effect on the control system of each stages on the vibration of the station :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:shell :eval no-export :END: * Introduction :ignore: This file is organized as follow: - Section [[sec:effect_control_all]]: - One geophone on the marble and one at the sample location - Each stage is turned on one by one - Section [[sec:effect_control_one]]: - One geophone on the marble and one at the sample location - Each stage is turned on one at a time - Section [[sec:effect_symetrie_driver]]: - We check if the Symetrie driver induces some vibrations when placed on the marble * Effect of all the control systems on the Sample vibrations :PROPERTIES: :header-args:matlab+: :tangle matlab/effect_control_all.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** ZIP file containing the data and matlab files :ignore: #+begin_src bash :exports none :results none if [ matlab/effect_control_all.m -nt data/effect_control_all.zip ]; then cp matlab/effect_control_all.m effect_control_all.m; zip data/effect_control_all \ mat/data_003.mat \ mat/data_004.mat \ mat/data_005.mat \ mat/data_006.mat \ mat/data_007.mat \ mat/data_008.mat \ effect_control_all.m; rm effect_control_all.m; fi #+end_src #+begin_note All the files (data and Matlab scripts) are accessible [[file:data/effect_control_all.zip][here]]. #+end_note ** Experimental Setup We here measure the signals of two L22 geophones: - One is located on top of the Sample platform - One is located on the marble The signals are amplified with voltage amplifiers with the following settings: - gain of 60dB - AC/DC option set on AC - Low pass filter set at 1kHz The signal from the top geophone does not go trought the slip-ring. First, all the control systems are turned ON, then, they are turned one by one. Each measurement are done during 50s. #+name: tab:control_system_on_off #+caption: Summary of the measurements and the states of the control systems | Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file | |------+------+-----------+---------+---------+----------------| | *ON* | *ON* | *ON* | *ON* | *ON* | =meas_003.mat= | | OFF | *ON* | *ON* | *ON* | *ON* | =meas_004.mat= | | OFF | OFF | *ON* | *ON* | *ON* | =meas_005.mat= | | OFF | OFF | OFF | *ON* | *ON* | =meas_006.mat= | | OFF | OFF | OFF | OFF | *ON* | =meas_007.mat= | | OFF | OFF | OFF | OFF | OFF | =meas_008.mat= | Each of the =mat= file contains one array =data= with 3 columns: | Column number | Description | |---------------+-------------------| | 1 | Geophone - Marble | | 2 | Geophone - Sample | | 3 | Time | ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> addpath('../src'); #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load data We load the data of the z axis of two geophones. #+begin_src matlab d3 = load('mat/data_003.mat', 'data'); d3 = d3.data; d4 = load('mat/data_004.mat', 'data'); d4 = d4.data; d5 = load('mat/data_005.mat', 'data'); d5 = d5.data; d6 = load('mat/data_006.mat', 'data'); d6 = d6.data; d7 = load('mat/data_007.mat', 'data'); d7 = d7.data; d8 = load('mat/data_008.mat', 'data'); d8 = d8.data; #+end_src ** Analysis - Time Domain First, we can look at the time domain data and compare all the measurements: - comparison for the geophone at the sample location (figure [[fig:time_domain_sample]]) - comparison for the geophone on the granite (figure [[fig:time_domain_marble]]) #+begin_src matlab figure; hold on; plot(d3(:, 3), d3(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty'); plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry'); plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Hexa, Rz, SR'); plot(d6(:, 3), d6(:, 2), 'DisplayName', 'Hexa, Rz'); plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Hexa'); plot(d8(:, 3), d8(:, 2), 'DisplayName', 'All OFF'); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_sample.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_sample #+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location #+RESULTS: [[file:figs/time_domain_sample.png]] #+begin_src matlab :results none figure; hold on; plot(d3(:, 3), d3(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty'); plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry'); plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Hexa, Rz, SR'); plot(d6(:, 3), d6(:, 1), 'DisplayName', 'Hexa, Rz'); plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Hexa'); plot(d8(:, 3), d8(:, 1), 'DisplayName', 'All OFF'); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_marble.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_marble #+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble #+RESULTS: [[file:figs/time_domain_marble.png]] ** Analysis - Frequency Domain #+begin_src matlab :exports none dt = d3(2, 3) - d3(1, 3); Fs = 1/dt; win = hanning(ceil(10*Fs)); #+end_src *** Vibrations at the sample location First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. #+begin_src matlab :results none [px3, f] = pwelch(d3(:, 2), win, [], [], Fs); [px4, ~] = pwelch(d4(:, 2), win, [], [], Fs); [px5, ~] = pwelch(d5(:, 2), win, [], [], Fs); [px6, ~] = pwelch(d6(:, 2), win, [], [], Fs); [px7, ~] = pwelch(d7(:, 2), win, [], [], Fs); [px8, ~] = pwelch(d8(:, 2), win, [], [], Fs); #+end_src And we compare all the signals (figures [[fig:psd_sample_comp]] and [[fig:psd_sample_comp_high_freq]]). #+begin_src matlab :results none figure; hold on; plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty'); plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry'); plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR'); plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz'); plot(f, sqrt(px7), 'DisplayName', 'Hexa'); plot(f, sqrt(px8), 'DisplayName', 'All OFF'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); legend('Location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_sample_comp.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_sample_comp #+caption: Amplitude Spectral Density of the signal coming from the top geophone #+RESULTS: [[file:figs/psd_sample_comp.png]] #+begin_src matlab :results none :tangle no :exports none xlim([80, 500]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_sample_comp_high_freq.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_sample_comp_high_freq #+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies) #+RESULTS: [[file:figs/psd_sample_comp_high_freq.png]] #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px3)))), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty'); plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px4)))), 'DisplayName', 'Hexa, Rz, SR, Ry'); plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px5)))), 'DisplayName', 'Hexa, Rz, SR'); plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px6)))), 'DisplayName', 'Hexa, Rz'); plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px7)))), 'DisplayName', 'Hexa'); plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px8)))), 'DisplayName', 'All OFF'); hold off; xlabel('Frequency [Hz]'); ylabel('CAS [V]'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); legend('location', 'southwest'); xlim([0.1, 300]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/cas_sample_comp.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:cas_sample_comp #+caption: #+RESULTS: [[file:figs/cas_sample_comp.png]] *** Vibrations on the marble Now we plot the same curves for the geophone located on the marble. #+begin_src matlab :results none [px3, f] = pwelch(d3(:, 1), win, [], [], Fs); [px4, ~] = pwelch(d4(:, 1), win, [], [], Fs); [px5, ~] = pwelch(d5(:, 1), win, [], [], Fs); [px6, ~] = pwelch(d6(:, 1), win, [], [], Fs); [px7, ~] = pwelch(d7(:, 1), win, [], [], Fs); [px8, ~] = pwelch(d8(:, 1), win, [], [], Fs); #+end_src And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp]] and [[fig:psd_marble_comp_high_freq]]) #+begin_src matlab :results none figure; hold on; plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty'); plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry'); plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR'); plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz'); plot(f, sqrt(px7), 'DisplayName', 'Hexa'); plot(f, sqrt(px8), 'DisplayName', 'All OFF'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); legend('Location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_marble_comp.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_marble_comp #+caption: Amplitude Spectral Density of the signal coming from the top geophone #+RESULTS: [[file:figs/psd_marble_comp.png]] #+begin_src matlab :results none :tangle no :exports none legend('Location', 'southwest'); xlim([80, 500]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_marble_comp_high_freq.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_marble_comp_high_freq #+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies) #+RESULTS: [[file:figs/psd_marble_comp_high_freq.png]] ** Conclusion #+begin_important - The control system of the Ty stage induces a lot of vibrations of the marble above 100Hz - The hexapod control system add vibrations of the sample only above 200Hz - When the Slip-Ring is ON, white noise appears at high frequencies. This is studied [[file:../slip-ring-electrical-noise/index.org][here]] #+end_important * Effect of all the control systems on the Sample vibrations - One stage at a time :PROPERTIES: :header-args:matlab+: :tangle matlab/effect_control_one.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** ZIP file containing the data and matlab files :ignore: #+begin_src bash :exports none :results none if [ matlab/effect_control_one.m -nt data/effect_control_one.zip ]; then cp matlab/effect_control_one.m effect_control_one.m; zip data/effect_control_one \ mat/data_013.mat \ mat/data_014.mat \ mat/data_015.mat \ mat/data_016.mat \ mat/data_017.mat \ mat/data_018.mat \ effect_control_one.m rm effect_control_one.m; fi #+end_src #+begin_note All the files (data and Matlab scripts) are accessible [[file:data/effect_control_one.zip][here]]. #+end_note ** Experimental Setup We here measure the signals of two geophones: - One is located on top of the Sample platform - One is located on the marble The signal from the top geophone does go trought the slip-ring. All the control systems are turned OFF, then, they are turned on one at a time. Each measurement are done during 100s. The settings of the voltage amplifier are shown on figure [[fig:amplifier_settings]]: - gain of 60dB - AC/DC option set on DC - Low pass filter set at 1kHz A first order low pass filter with a cut-off frequency of 1kHz is added before the voltage amplifier. #+name: tab:control_system_on_off #+caption: Summary of the measurements and the states of the control systems | Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file | |------+------+-----------+---------+---------+----------------| | OFF | OFF | OFF | OFF | OFF | =meas_013.mat= | | *ON* | OFF | OFF | OFF | OFF | =meas_014.mat= | | OFF | *ON* | OFF | OFF | OFF | =meas_015.mat= | | OFF | OFF | *ON* | OFF | OFF | =meas_016.mat= | | OFF | OFF | OFF | *ON* | OFF | =meas_017.mat= | | OFF | OFF | OFF | OFF | *ON* | =meas_018.mat= | Each of the =mat= file contains one array =data= with 3 columns: | Column number | Description | |---------------+-------------------| | 1 | Geophone - Marble | | 2 | Geophone - Sample | | 3 | Time | #+name: fig:amplifier_settings #+caption: Voltage amplifier settings for the measurement #+attr_html: :width 500px [[file:./img/IMG_20190507_101459.jpg]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> addpath('../src'); #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load data We load the data of the z axis of two geophones. #+begin_src matlab :results none d_of = load('mat/data_013.mat', 'data'); d_of = d_of.data; d_ty = load('mat/data_014.mat', 'data'); d_ty = d_ty.data; d_ry = load('mat/data_015.mat', 'data'); d_ry = d_ry.data; d_sr = load('mat/data_016.mat', 'data'); d_sr = d_sr.data; d_rz = load('mat/data_017.mat', 'data'); d_rz = d_rz.data; d_he = load('mat/data_018.mat', 'data'); d_he = d_he.data; #+end_src ** Voltage to Velocity We convert the measured voltage to velocity using the function =voltageToVelocityL22= (accessible [[file:~/Cloud/thesis/meas/srcindex.org][here]]). #+begin_src matlab gain = 60; % [dB] d_of(:, 1) = voltageToVelocityL22(d_of(:, 1), d_of(:, 3), gain); d_ty(:, 1) = voltageToVelocityL22(d_ty(:, 1), d_ty(:, 3), gain); d_ry(:, 1) = voltageToVelocityL22(d_ry(:, 1), d_ry(:, 3), gain); d_sr(:, 1) = voltageToVelocityL22(d_sr(:, 1), d_sr(:, 3), gain); d_rz(:, 1) = voltageToVelocityL22(d_rz(:, 1), d_rz(:, 3), gain); d_he(:, 1) = voltageToVelocityL22(d_he(:, 1), d_he(:, 3), gain); d_of(:, 2) = voltageToVelocityL22(d_of(:, 2), d_of(:, 3), gain); d_ty(:, 2) = voltageToVelocityL22(d_ty(:, 2), d_ty(:, 3), gain); d_ry(:, 2) = voltageToVelocityL22(d_ry(:, 2), d_ry(:, 3), gain); d_sr(:, 2) = voltageToVelocityL22(d_sr(:, 2), d_sr(:, 3), gain); d_rz(:, 2) = voltageToVelocityL22(d_rz(:, 2), d_rz(:, 3), gain); d_he(:, 2) = voltageToVelocityL22(d_he(:, 2), d_he(:, 3), gain); #+end_src ** Analysis - Time Domain First, we can look at the time domain data and compare all the measurements: - comparison for the geophone at the sample location (figure [[fig:time_domain_sample_lpf]]) - comparison for the geophone on the granite (figure [[fig:time_domain_marble_lpf]]) - relative displacement of the sample with respect to the marble (figure [[fig:time_domain_marble_lpf]]) #+begin_src matlab :exports none figure; hold on; plot(d_of(:, 3), d_of(:, 2), 'DisplayName', 'All OFF'); plot(d_ty(:, 3), d_ty(:, 2), 'DisplayName', 'Ty ON'); plot(d_ry(:, 3), d_ry(:, 2), 'DisplayName', 'Ry ON'); plot(d_sr(:, 3), d_sr(:, 2), 'DisplayName', 'S-R ON'); plot(d_rz(:, 3), d_rz(:, 2), 'DisplayName', 'Rz ON'); plot(d_he(:, 3), d_he(:, 2), 'DisplayName', 'Hexa ON'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_sample_lpf.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_sample_lpf #+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location #+RESULTS: [[file:figs/time_domain_sample_lpf.png]] #+begin_src matlab :exports none figure; hold on; plot(d_of(:, 3), d_of(:, 1), 'DisplayName', 'All OFF'); plot(d_ty(:, 3), d_ty(:, 1), 'DisplayName', 'Ty ON'); plot(d_ry(:, 3), d_ry(:, 1), 'DisplayName', 'Ry ON'); plot(d_sr(:, 3), d_sr(:, 1), 'DisplayName', 'S-R ON'); plot(d_rz(:, 3), d_rz(:, 1), 'DisplayName', 'Rz ON'); plot(d_he(:, 3), d_he(:, 1), 'DisplayName', 'Hexa ON'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_marble_lpf.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_marble_lpf #+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble #+RESULTS: [[file:figs/time_domain_marble_lpf.png]] #+begin_src matlab :exports none figure; hold on; plot(d_of(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_of(:, 2)-d_of(:, 1), d_of(:, 3)), 'DisplayName', 'All OFF'); plot(d_ty(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_ty(:, 2)-d_ty(:, 1), d_ty(:, 3)), 'DisplayName', 'Ty ON'); plot(d_ry(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_ry(:, 2)-d_ry(:, 1), d_ry(:, 3)), 'DisplayName', 'Ry ON'); plot(d_sr(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_sr(:, 2)-d_sr(:, 1), d_sr(:, 3)), 'DisplayName', 'S-R ON'); plot(d_rz(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_rz(:, 2)-d_rz(:, 1), d_rz(:, 3)), 'DisplayName', 'Rz ON'); plot(d_he(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_he(:, 2)-d_he(:, 1), d_he(:, 3)), 'DisplayName', 'Hexa ON'); hold off; xlabel('Time [s]'); ylabel('Relative Displacement [$\mu m$]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_relative_disp.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_relative_disp #+caption: Relative displacement of the sample with respect to the marble #+RESULTS: [[file:figs/time_domain_relative_disp.png]] ** Analysis - Frequency Domain #+begin_src matlab :results none dt = d_of(2, 3) - d_of(1, 3); Fs = 1/dt; win = hanning(ceil(10*Fs)); #+end_src *** Vibrations at the sample location First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. #+begin_src matlab :results none [px_of, f] = pwelch(d_of(:, 2), win, [], [], Fs); [px_ty, ~] = pwelch(d_ty(:, 2), win, [], [], Fs); [px_ry, ~] = pwelch(d_ry(:, 2), win, [], [], Fs); [px_sr, ~] = pwelch(d_sr(:, 2), win, [], [], Fs); [px_rz, ~] = pwelch(d_rz(:, 2), win, [], [], Fs); [px_he, ~] = pwelch(d_he(:, 2), win, [], [], Fs); #+end_src And we compare all the signals (figures [[fig:psd_sample_comp_lpf]] and [[fig:psd_sample_comp_high_freq_lpf]]). #+begin_src matlab :results none figure; hold on; plot(f, sqrt(px_of), 'DisplayName', 'All OFF'); plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON'); plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON'); plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON'); plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON'); plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{m/s}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); legend('Location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_sample_comp_lpf.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_sample_comp_lpf #+caption: Amplitude Spectral Density of the sample velocity #+RESULTS: [[file:figs/psd_sample_comp_lpf.png]] #+begin_src matlab :results none :tangle no :exports none xlim([80, 500]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_sample_comp_high_freq_lpf.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_sample_comp_high_freq_lpf #+caption: Amplitude Spectral Density of the sample velocity (zoom at high frequencies) #+RESULTS: [[file:figs/psd_sample_comp_high_freq_lpf.png]] *** Vibrations on the marble Now we plot the same curves for the geophone located on the marble. #+begin_src matlab :exports none [px_of, f] = pwelch(d_of(:, 1), win, [], [], Fs); [px_ty, ~] = pwelch(d_ty(:, 1), win, [], [], Fs); [px_ry, ~] = pwelch(d_ry(:, 1), win, [], [], Fs); [px_sr, ~] = pwelch(d_sr(:, 1), win, [], [], Fs); [px_rz, ~] = pwelch(d_rz(:, 1), win, [], [], Fs); [px_he, ~] = pwelch(d_he(:, 1), win, [], [], Fs); #+end_src And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp_lpf]] and [[fig:psd_marble_lpf_high_freq]]) #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(px_of), 'DisplayName', 'All OFF'); plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON'); plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON'); plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON'); plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON'); plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{m/s}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); legend('Location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_marble_comp_lpf.pdf', 'width', 'full', 'height', 'full') #+end_src #+name: fig:psd_marble_comp_lpf #+caption: Amplitude Spectral Density of the marble velocity #+RESULTS: [[file:figs/psd_marble_comp_lpf.png]] #+begin_src matlab :results none :tangle no :exports none legend('Location', 'southwest'); xlim([80, 500]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_marble_lpf_high_freq.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_marble_lpf_high_freq #+caption: Amplitude Spectral Density of the marble velocity (zoom at high frequencies) #+RESULTS: [[file:figs/psd_marble_lpf_high_freq.png]] ** Conclusion #+begin_important - The Ty stage induces vibrations of the marble and at the sample location above 100Hz - The hexapod stage induces vibrations at the sample position above 220Hz #+end_important * Effect of the Symetrie Driver :PROPERTIES: :header-args:matlab+: :tangle matlab/effect_symetrie_driver.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** ZIP file containing the data and matlab files :ignore: #+begin_src bash :exports none :results none if [ matlab/effect_symetrie_driver.m -nt data/effect_symetrie_driver.zip ]; then cp matlab/effect_symetrie_driver.m effect_symetrie_driver.m; zip data/effect_symetrie_driver \ mat/data_018.mat \ mat/data_019.mat \ effect_symetrie_driver.m rm effect_symetrie_driver.m; fi #+end_src #+begin_note All the files (data and Matlab scripts) are accessible [[file:data/effect_symetrie_driver.zip][here]]. #+end_note ** Experimental Setup We here measure the signals of two geophones: - One is located on top of the Sample platform - One is located on the marble The signal from the top geophone does go trought the slip-ring. All the control systems are turned OFF except the Hexapod one. Each measurement are done during 100s. The settings of the voltage amplifier are: - gain of 60dB - AC/DC option set on DC - Low pass filter set at 1kHz A first order low pass filter with a cut-off frequency of 1kHz is added before the voltage amplifier. The measurements are: - =meas_018.mat=: Hexapod's driver on the granite - =meas_019.mat=: Hexapod's driver on the ground Each of the =mat= file contains one array =data= with 3 columns: | Column number | Description | |---------------+-------------------| | 1 | Geophone - Marble | | 2 | Geophone - Sample | | 3 | Time | ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load data We load the data of the z axis of two geophones. #+begin_src matlab :results none d_18 = load('mat/data_018.mat', 'data'); d_18 = d_18.data; d_19 = load('mat/data_019.mat', 'data'); d_19 = d_19.data; #+end_src ** Analysis - Time Domain #+begin_src matlab :results none figure; hold on; plot(d_19(:, 3), d_19(:, 1), 'DisplayName', 'Driver - Ground'); plot(d_18(:, 3), d_18(:, 1), 'DisplayName', 'Driver - Granite'); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); xlim([0, 50]); legend('Location', 'bestoutside'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/time_domain_hexa_driver.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:time_domain_hexa_driver #+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location #+RESULTS: [[file:figs/time_domain_hexa_driver.png]] ** Analysis - Frequency Domain #+begin_src matlab :results none dt = d_18(2, 3) - d_18(1, 3); Fs = 1/dt; win = hanning(ceil(10*Fs)); #+end_src *** Vibrations at the sample location First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. #+begin_src matlab :results none [px_18, f] = pwelch(d_18(:, 1), win, [], [], Fs); [px_19, ~] = pwelch(d_19(:, 1), win, [], [], Fs); #+end_src #+begin_src matlab :results none figure; hold on; plot(f, sqrt(px_19), 'DisplayName', 'Driver - Ground'); plot(f, sqrt(px_18), 'DisplayName', 'Driver - Granite'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$') xlim([0.1, 500]); legend('Location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_hexa_driver.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_hexa_driver #+caption: Amplitude Spectral Density of the signal coming from the top geophone #+RESULTS: [[file:figs/psd_hexa_driver.png]] #+begin_src matlab :results none :tangle no :exports none xlim([80, 500]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/psd_hexa_driver_high_freq.pdf', 'width', 'full', 'height', 'tall') #+end_src #+name: fig:psd_hexa_driver_high_freq #+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies) #+RESULTS: [[file:figs/psd_hexa_driver_high_freq.png]] ** Conclusion #+begin_important Even tough the Hexapod's driver vibrates quite a lot, it does not generate significant vibrations of the granite when either placed on the granite or on the ground. #+end_important