function Res = Tilt_Spindle_error(dataX, dataX2,NbTurn, texte, path) L = length(dataX); res_per_rev = L/NbTurn; P = 0: (res_per_rev * NbTurn)-1; Pos = P'*360/res_per_rev; Theta = deg2rad(Pos)'; D = 76.2; %distance entre les deux balls en milimetres x1 = myfit2(Pos, dataX); y1 = myfit2(Pos, dataX2); %Convert data to frequency domain and scale accordingly X2 = 2/(res_per_rev*NbTurn)*fft(x1); f2 = (0:L-1)./NbTurn; Y2 = 2/(res_per_rev*NbTurn)*fft(y1); % Separate the fft integers and not-integers for i = 1:length(f2) if mod(f2(i), 1) == 0 X2dec(i) = 0; X2int(i) = X2(i); Y2dec(i) = 0; Y2int(i) = Y2(i); else X2dec(i) = X2(i); X2int(i) = 0; Y2dec(i) = Y2(i); Y2int(i) = 0; end end if mod(length(f2),2) == 1 % Case length(f2) is odd -> the mirror image of the FFT is reflected between 2 harmonique for i = length(f2)/2+1.5:length(f2) if mod(f2(i-1), 1) == 0 X2dec(i) = 0; X2int(i) = X2(i); Y2dec(i) = 0; Y2int(i) = Y2(i); else X2dec(i) = X2(i); X2int(i) = 0; Y2dec(i) = Y2(i); Y2int(i) = 0; end end else % Case length(f2) is even -> the mirror image of the FFT is reflected at the Nyquist frequency for i = length(f2)/2+1:length(f2) if mod(f2(i), 1) == 0; X2dec(i) = 0; X2int(i) = X2(i); Y2dec(i) = 0; Y2int(i) = Y2(i); else X2dec(i) = X2(i); X2int(i) = 0; Y2dec(i) = Y2(i); Y2int(i) = 0; end end end X2int(1) = 0; %remove the data average/dc component X2int(NbTurn+1) = 0; %Remove fondamental/eccentricity % X2int(length(f2)) = 0; %remove the data average/dc component X2int(length(f2)-NbTurn+1) = 0; %Remove eccentricity Y2int(1) = 0; %remove the data average/dc component Y2int(NbTurn+1) = 0; %Remove fondamental/eccentricity % Y2int(length(f2)) = 0; %remove the data average/dc component Y2int(length(f2)-NbTurn+1) = 0; %Remove eccentricity % Extract the fondamentale-> exentricity for i = 1:length(f2) if i == NbTurn+1 || i== length(f2)-NbTurn + 1 X2fond(i) = X2(i); Y2fond(i) = Y2(i); else X2fond(i) = 0; Y2fond(i) = 0; end end X2tot = X2int + X2dec; Y2tot = Y2int + Y2dec; %Convert data to "time" domain and scale accordingly Wxint = real((res_per_rev*NbTurn)/2*ifft(X2int)); Wxdec = real((res_per_rev*NbTurn)/2*ifft(X2dec)); Wxtot = real((res_per_rev*NbTurn)/2*ifft(X2tot)); %Convert data to "time" domain and scale accordingly Wyint = real((res_per_rev*NbTurn)/2*ifft(Y2int)); Wydec = real((res_per_rev*NbTurn)/2*ifft(Y2dec)); Wytot = real((res_per_rev*NbTurn)/2*ifft(Y2tot)); Tint = atan((Wyint - Wxint)/(D*1000)); Tdec = atan((Wydec - Wxdec)/(D*1000)); Ttot = atan((Wytot - Wxtot)/(D*1000)); %% fig = figure(); % total error motion Total_Error = max(Ttot)- min(Ttot); %lsc X synchronous Synchronous_Error = max(Tint)- min(Tint); %lsc X Asynchronous var = reshape(Tdec,length(Tdec)/NbTurn,NbTurn); for i = 1:length(Tdec)/NbTurn Asynch(i) = max(var(i,:)) - min(var(i,:)) ; end Asynchronous_Error = max(Asynch)- min(Asynch); % Raw Error Motion without Exentricity (sync +asynch) subplot(2, 2, 2); polar2(Theta,Ttot, 'b'); title('Total error'); % Residual Synchronous Error Motion without Exentricity (ie fondamental sync err motion) subplot(2, 2, 3); polar2(Theta,Tint,'b'); title('Residual synchronous error'); % Asynchronous Error Motion subplot(2, 2, 4); polar2(Theta,Tdec, 'b'); title ('Asynchronous error'); %% strmin1 = ['Total error = ', num2str(Total_Error*1000000), ' \murad']; strmin2 = ['Residual synchronous error = ', num2str(Synchronous_Error*1000000), ' \murad' ]; strmin3 = ['Asynchronous error = ', num2str(Asynchronous_Error*1000000), ' \murad']; dim0 =[0.04 0.5 0.3 .3];%x y w h basgauche to hautdroite dim1 =[0.15 0.65 0.3 .3]; annotation('textbox',dim0, 'String',{ strmin1 , strmin2, strmin3}, 'FitBoxToText', 'on') annotation('textbox',dim1, 'String',texte, 'FitBoxToText', 'on') saveas(fig,fullfile(path,char(texte)),'jpg'); Res = 1; close all; end