diff --git a/modal-analysis/figs/aligned_accelerometers.png b/modal-analysis/figs/aligned_accelerometers.png new file mode 100644 index 0000000..cef4f5a Binary files /dev/null and b/modal-analysis/figs/aligned_accelerometers.png differ diff --git a/modal-analysis/figs/all_coherence.png b/modal-analysis/figs/all_coherence.png new file mode 100644 index 0000000..8a5e588 Binary files /dev/null and b/modal-analysis/figs/all_coherence.png differ diff --git a/modal-analysis/figs/compare_acc_x_dir.png b/modal-analysis/figs/compare_acc_x_dir.png new file mode 100644 index 0000000..9ec3cf4 Binary files /dev/null and b/modal-analysis/figs/compare_acc_x_dir.png differ diff --git a/modal-analysis/figs/compare_acc_y_dir.png b/modal-analysis/figs/compare_acc_y_dir.png new file mode 100644 index 0000000..77a36e8 Binary files /dev/null and b/modal-analysis/figs/compare_acc_y_dir.png differ diff --git a/modal-analysis/figs/frf_all_bodies_one_direction.png b/modal-analysis/figs/frf_all_bodies_one_direction.png new file mode 100644 index 0000000..d7bd783 Binary files /dev/null and b/modal-analysis/figs/frf_all_bodies_one_direction.png differ diff --git a/modal-analysis/figs/frf_one_body_all_directions.png b/modal-analysis/figs/frf_one_body_all_directions.png new file mode 100644 index 0000000..f1ebd20 Binary files /dev/null and b/modal-analysis/figs/frf_one_body_all_directions.png differ diff --git a/modal-analysis/figs/local_to_global_coordinates.png b/modal-analysis/figs/local_to_global_coordinates.png index d266ad4..8ed5bcd 100644 Binary files a/modal-analysis/figs/local_to_global_coordinates.png and b/modal-analysis/figs/local_to_global_coordinates.png differ diff --git a/modal-analysis/figs/recovered_frf_comparison_hexa.png b/modal-analysis/figs/recovered_frf_comparison_hexa.png new file mode 100644 index 0000000..4f9678f Binary files /dev/null and b/modal-analysis/figs/recovered_frf_comparison_hexa.png differ diff --git a/modal-analysis/figs/recovered_frf_comparison_ty.png b/modal-analysis/figs/recovered_frf_comparison_ty.png new file mode 100644 index 0000000..5a1c9f2 Binary files /dev/null and b/modal-analysis/figs/recovered_frf_comparison_ty.png differ diff --git a/modal-analysis/figs/relative_motion_comparison.png b/modal-analysis/figs/relative_motion_comparison.png new file mode 100644 index 0000000..ad90d72 Binary files /dev/null and b/modal-analysis/figs/relative_motion_comparison.png differ diff --git a/modal-analysis/frf_processing.html b/modal-analysis/frf_processing.html new file mode 100644 index 0000000..e388195 --- /dev/null +++ b/modal-analysis/frf_processing.html @@ -0,0 +1,784 @@ + + + + + + + +Modal Analysis - Processing of FRF + + + + + + + + + + + + + + + +
+ UP + | + HOME +
+

Modal Analysis - Processing of FRF

+
+

Table of Contents

+ +
+ +

+The measurements have been conducted and we have computed the \(n \times p \times q\) Frequency Response Functions Matrix with: +

+ + +

+However, in our model, we only consider 6 solid bodies, namely: +

+ + +

+Thus, we are only interested in \(6 \times 6 = 36\) degrees of freedom. +

+ +

+We here process the FRF matrix to go from the 69 measured DOFs to the wanted 36 DOFs. +

+ +
+

1 Importation of measured FRF curves

+
+

+We load the measured FRF and Coherence matrices. +We also load the geometric parameters of the station: solid bodies considered and the position of the accelerometers. +

+ +
+
load('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs');
+load('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos');
+
+
+
+
+ +
+

2 From accelerometer DOFs to solid body DOFs - Mathematics

+
+

+Let's consider the schematic shown on figure 1 where we are measuring the motion of a (supposed) solid body at 4 distinct points in x-y-z. +

+ +

+The goal here is to link these \(4 \times 3 = 12\) measurements to the 6 DOFs of the solid body expressed in the frame \(\{O\}\). +

+ + +
+

local_to_global_coordinates.png +

+

Figure 1: Schematic of the measured motions of a solid body

+
+ +

+From the figure 1, we can write: +

+\begin{align*} + \vec{v}_1 &= \vec{v} + \Omega \vec{p}_1\\ + \vec{v}_2 &= \vec{v} + \Omega \vec{p}_2\\ + \vec{v}_3 &= \vec{v} + \Omega \vec{p}_3\\ + \vec{v}_4 &= \vec{v} + \Omega \vec{p}_4 +\end{align*} + +

+With +

+\begin{equation} + \Omega = \begin{bmatrix} + 0 & -\Omega_z & \Omega_y \\ + \Omega_z & 0 & -\Omega_x \\ + -\Omega_y & \Omega_x & 0 +\end{bmatrix} +\end{equation} +

+\(\vec{v}\) and \(\Omega\) represent to velocity and rotation of the solid expressed in the frame \(\{O\}\). +

+ +

+We can rearrange the equations in a matrix form: +

+ +\begin{equation} +\left[\begin{array}{ccc|ccc} + 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ + 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ + 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline + & \vdots & & & \vdots & \\ \hline + 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ + 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ + 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 +\end{array}\right] \begin{bmatrix} + v_x \\ v_y \\ v_z \\ \hline \Omega_x \\ \Omega_y \\ \Omega_z +\end{bmatrix} = \begin{bmatrix} + v_{1x} \\ v_{1y} \\ v_{1z} \\\hline \vdots \\\hline v_{4x} \\ v_{4y} \\ v_{4z} +\end{bmatrix} +\end{equation} + +

+and then we obtain the velocity and rotation of the solid in the wanted frame \(\{O\}\): +

+\begin{equation} +\begin{bmatrix} + v_x \\ v_y \\ v_z \\ \hline \Omega_x \\ \Omega_y \\ \Omega_z +\end{bmatrix} = +\left[\begin{array}{ccc|ccc} + 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ + 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ + 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline + & \vdots & & & \vdots & \\ \hline + 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ + 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ + 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 +\end{array}\right]^{-1} \begin{bmatrix} + v_{1x} \\ v_{1y} \\ v_{1z} \\\hline \vdots \\\hline v_{4x} \\ v_{4y} \\ v_{4z} +\end{bmatrix} +\end{equation} + +

+This inversion is equivalent to resolving a mean square problem. +

+
+
+ +
+

3 What reference frame to choose?

+
+

+The question we wish here to answer is how to choose the reference frame \(\{O\}\) in which the DOFs of the solid bodies are defined. +

+ +

+The goal is to compare the motion of each solid body to see which relative DOFs between solid bodies can be neglected, that is to say, which joint between solid bodies can be regarded as perfect (and this in all the frequency range of interest). +Ideally, we would like to have the same number of degrees of freedom than the number of identified modes. +

+ +

+The possibles choices are: +

+
    +
  • One frame for each solid body which is located at its center of mass
  • +
  • One common frame, for instance located at the point of interest (\(270mm\) above the Hexapod)
  • +
  • Base located at the joint position: this is where we want to see the motion and estimate stiffness
  • +
+ + + + +++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1: Advantages and disadvantages for the choice of reference frame
Chosen FrameAdvantagesDisadvantages
Frames at CoMPhysically, it makes more senseHow to compare the motion of the solid bodies?
Common FrameWe can compare the motion of each solid bodySmall \(\theta_{x, y}\) may result in large \(T_{x, y}\)
Frames at joint positionDirectly gives which joint direction can be blockedHow to choose the joint position?
+ +

+As the easiest choice is to choose a common frame, we start with that solution. +

+
+
+ +
+

4 From accelerometer DOFs to solid body DOFs - Matlab Implementation

+
+

+First, we initialize a new FRF matrix FRFs_O which is an \(n \times p \times q\) with: +

+
    +
  • \(n\) is the number of DOFs of the considered 6 solid-bodies: \(6 \times 6 = 36\)
  • +
  • \(p\) is the number of excitation inputs: \(3\)
  • +
  • \(q\) is the number of frequency points \(\omega_i\)
  • +
+ +
+
FRFs_O = zeros(length(solid_names)*6, 3, 801);
+
+
+ +

+Then, as we know the positions of the accelerometers on each solid body, and we have the response of those accelerometers, we can use the equations derived in the previous section to determine the response of each solid body expressed in the frame \(\{O\}\). +

+
+
for solid_i = 1:length(solid_names)
+  solids_i = solids.(solid_names{solid_i});
+
+  A = zeros(3*length(solids_i), 6);
+  for i = 1:length(solids_i)
+    acc_i = solids_i(i);
+
+    A(3*(i-1)+1:3*i, 1:3) = eye(3);
+    A(3*(i-1)+1:3*i, 4:6) = [ 0                  acc_pos(acc_i, 3) -acc_pos(acc_i, 2) ;
+                             -acc_pos(acc_i, 3)  0                  acc_pos(acc_i, 1) ;
+                              acc_pos(acc_i, 2) -acc_pos(acc_i, 1)  0];
+  end
+
+  for exc_dir = 1:3
+    FRFs_O((solid_i-1)*6+1:solid_i*6, exc_dir, :) = A\squeeze(FRFs((solids_i(1)-1)*3+1:solids_i(end)*3, exc_dir, :));
+  end
+end
+
+
+
+
+ +
+

5 Analysis of some FRF in the global coordinates

+
+

+First, we can compare the motions of the 6 solid bodies in one direction (figure 2) +

+ +

+We can also compare all the DOFs of one solid body (figure 3). +

+ + +
+

frf_all_bodies_one_direction.png +

+

Figure 2: FRFs of all the 6 solid bodies in one direction

+
+ + +
+

frf_one_body_all_directions.png +

+

Figure 3: FRFs of one solid body in all its DOFs

+
+
+
+ +
+

6 TODO How to compare the relative motion of solid bodies

+
+

+We have some of elements of the full FRF matrix: +\[ \frac{D_{1x}}{F_x},\ \frac{D_{1y}}{F_x},\ \frac{D_{1z}}{F_x},\ \frac{D_{2x}}{F_x},\ \dots \] +

+ +

+\[ \frac{D_{1x}}{D_{2x}} = \frac{\frac{D_{1x}}{F_x}}{\frac{D_{2x}}{F_x}} \] +Then, if \(\left| \frac{D_{1x}}{D_{2x}} \right| \approx 1\) in all the frequency band of interest, we can block the \(x\) motion between the solids 1 and 2. +

+ +

+\[ \frac{D_{2x} - D_{1x}}{D_{1x} + D_{2x}} = \frac{\frac{D_{2x}}{F_x} - \frac{D_{1x}}{F_x}}{\frac{D_{1x}}{F_x} + \frac{D_{2x}}{F_x}} \] +

+ +

+Then if \(\left| \frac{D_{2x} - D_{1x}}{D_{1x} + D_{2x}} \right| \ll 1\) in all the frequency band of interest, we can block the \(x\) motion between the solids 1 and 2. +

+
+
+ +
+

7 Relative Motion in the global coordinates

+
+

+Below we plot the normalized relative motion between each stage: +\[ 0 < \frac{\left| D_{ix} - D_{jx} \right|}{|D_{ix}| + |D_{jx}|} < 1 \] +

+ +
+
DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'}
+
+dirs_i = 1:6;
+exc_dir = 1;
+
+figure;
+
+for i = 2:6
+  subaxis(3, 2, i);
+  hold on;
+  for dir_i = dirs_i
+    H = (squeeze(FRFs_O((i-1)*6+dir_i, exc_dir, :))-squeeze(FRFs_O((i-2)*6+dir_i, exc_dir, :)))./(abs(squeeze(FRFs_O((i-1)*6+dir_i, exc_dir, :)))+abs(squeeze(FRFs_O((i-2)*6+dir_i, exc_dir, :))));
+    plot(freqs, abs(H));
+  end
+  hold off;
+  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+  xlim([1, 200]); ylim([0, 1]);
+  % xlabel('Frequency [Hz]'); ylabel('Relative Motion');
+  title(sprintf('Normalized motion %s - %s', solid_names{i-1}, solid_names{i}));
+  if i > 4
+    xlabel('Frequency [Hz]');
+  else
+    set(gca, 'XTickLabel',[]);
+  end
+end
+
+for i = 1:length(dirs_i)
+  legend_names{i} = DOFs{dirs_i(i)};
+end
+lgd = legend(legend_names);
+
+hL = subplot(3, 2, 1);
+poshL = get(hL,'position');
+
+set(lgd,'position', poshL);
+axis(hL, 'off');
+
+
+ + +
+

relative_motion_comparison.png +

+

Figure 4: Relative motion between each stage

+
+
+
+ +
+

8 TODO Compare original FRF measurements to transformed FRF in the global frame

+
+

+We wish here to compare the FRF in order to verify if there is any mistake. +

+ +
+
dir_names = {'X', 'Y', 'Z', '$\theta_X$', '$\theta_Y$', '$\theta_Z$'};
+
+solid_i = 6;
+acc_dir_O = 1;
+acc_dir = 1;
+exc_dir = 1;
+
+figure;
+
+ax1 = subplot(2, 1, 1);
+hold on;
+for i = solids.(solid_names{solid_i})
+  plot(freqs, abs(squeeze(FRFs(acc_dir+3*(i-1), exc_dir, :))));
+end
+plot(freqs, abs(squeeze(FRFs_O((solid_i-1)*6+acc_dir_O, exc_dir, :))), '-k');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Amplitude');
+title(sprintf('%s motion measured by the Acc. vs %s motion computed in the common frame - %s', dir_names{acc_dir}, dir_names{acc_dir_O}, solid_names{solid_i}));
+
+ax2 = subplot(2, 1, 2);
+hold on;
+for i = solids.(solid_names{solid_i})
+  plot(freqs, mod(180+180/pi*phase(squeeze(FRFs(acc_dir+3*(i-1), exc_dir, :))), 360)-180);
+end
+plot(freqs, mod(180+180/pi*phase(squeeze(FRFs_O((solid_i-1)*6+acc_dir_O, exc_dir, :))), 360)-180, '-k');
+hold off;
+ylim([-180, 180]); yticks(-180:90:180);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+set(gca, 'xscale', 'log');
+
+linkaxes([ax1,ax2],'x');
+xlim([1, 200]);
+
+
+
+
+ +
+

9 Verify that we find the original FRF from the FRF in the global coordinates

+
+

+We have computed the Frequency Response Functions Matrix FRFs_O representing the response of the 6 solid bodies in their 6 DOFs. +

+ +

+From the response of one body in its 6 DOFs, we should be able to compute the FRF of each of its accelerometer fixed to it during the measurement. +

+ +

+We can then compare the result with the original measurements. +This will help us to determine if: +

+
    +
  • the previous inversion used is correct
  • +
  • the solid body assumption is correct in the frequency band of interest
  • +
+ +
+
FRF_recovered = zeros(size(FRFs));
+
+% For each excitation direction
+for exc_dir = 1:3
+  % For each solid
+  for solid_i = 1:length(solid_names)
+    v0 = squeeze(FRFs_O((solid_i-1)*6+1:(solid_i-1)*6+3, exc_dir, :));
+    W0 = squeeze(FRFs_O((solid_i-1)*6+4:(solid_i-1)*6+6, exc_dir, :));
+
+    % For each accelerometer attached to the current solid
+    for acc_i = solids.(solid_names{solid_i})
+      % We get the position of the accelerometer expressed in frame O
+      pos = acc_pos(acc_i, :)';
+      posX = [0 pos(3) -pos(2); -pos(3) 0 pos(1) ; pos(2) -pos(1) 0];
+             [0 acc_pos(i, 3) -acc_pos(i, 2) ; -acc_pos(i, 3) 0 acc_pos(i, 1) ; acc_pos(i, 2) -acc_pos(i, 1) 0]
+
+      FRF_recovered(3*(acc_i-1)+1:3*(acc_i-1)+3, exc_dir, :) = v0 + posX*W0;
+    end
+  end
+end
+
+
+ +

+We then compare the original FRF measured for each accelerometer with the recovered FRF from the global FRF matrix in the common frame. +

+ +

+The FRF for the 4 accelerometers on the Hexapod are compared on figure 5. +All the FRF are matching very well in all the frequency range displayed. +

+ +

+The FRF for accelerometers located on the translation stage are compared on figure 6. +The FRF are matching well until 100Hz. +

+ + +
+

recovered_frf_comparison_hexa.png +

+

Figure 5: Comparison of the original FRF with the recovered ones - Hexapod

+
+ + +
+

recovered_frf_comparison_ty.png +

+

Figure 6: Comparison of the original FRF with the recovered ones - Ty

+
+ + +
+

+The reduction of the number of degrees of freedom from 69 (23 accelerometers with each 3DOF) to 36 (6 solid bodies with 6 DOF) seems to work well. +

+ +

+This confirms the fact that the stages are indeed behaving as a solid body in the frequency band of interest. +This valid the fact that a multi-body model can be used to represent the dynamics of the micro-station. +

+ +
+
+
+
+
+

Author: Dehaeze Thomas

+

Created: 2019-07-05 ven. 10:16

+

Validate

+
+ + diff --git a/modal-analysis/frf_processing.org b/modal-analysis/frf_processing.org new file mode 100644 index 0000000..2285d88 --- /dev/null +++ b/modal-analysis/frf_processing.org @@ -0,0 +1,680 @@ +#+TITLE: Modal Analysis - Processing of FRF +:DRAWER: +#+STARTUP: overview + +#+LANGUAGE: en +#+EMAIL: dehaeze.thomas@gmail.com +#+AUTHOR: Dehaeze Thomas + +#+HTML_LINK_HOME: ../index.html +#+HTML_LINK_UP: ./index.html + +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: + +#+HTML_MATHJAX: align: center tagside: right font: TeX + +#+PROPERTY: header-args:matlab :session *MATLAB* +#+PROPERTY: header-args:matlab+ :comments org +#+PROPERTY: header-args:matlab+ :results none +#+PROPERTY: header-args:matlab+ :exports both +#+PROPERTY: header-args:matlab+ :eval no-export +#+PROPERTY: header-args:matlab+ :output-dir figs + +#+PROPERTY: header-args:shell :eval no-export + +#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}") +#+PROPERTY: header-args:latex+ :imagemagick t :fit yes +#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 +#+PROPERTY: header-args:latex+ :imoutoptions -quality 100 +#+PROPERTY: header-args:latex+ :results raw replace :buffer no +#+PROPERTY: header-args:latex+ :eval no-export +#+PROPERTY: header-args:latex+ :exports both +#+PROPERTY: header-args:latex+ :mkdirp yes +#+PROPERTY: header-args:latex+ :output-dir figs +:END: + +The measurements have been conducted and we have computed the $n \times p \times q$ Frequency Response Functions Matrix with: +- $n$: the number of measurements: $23 \times 3 = 69$ (23 accelerometers measuring 3 directions each) +- $p$: the number of excitation inputs: $3$ +- $q$: the number of frequency points $\omega_i$ + +However, in our model, we only consider 6 solid bodies, namely: +- Bottom Granite +- Top Granite +- Translation Stage +- Tilt Stage +- Spindle +- Hexapod + +Thus, we are only interested in $6 \times 6 = 36$ degrees of freedom. + +We here process the FRF matrix to go from the 69 measured DOFs to the wanted 36 DOFs. + +* Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +* Importation of measured FRF curves +We load the measured FRF and Coherence matrices. +We also load the geometric parameters of the station: solid bodies considered and the position of the accelerometers. + +#+begin_src matlab + load('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs'); + load('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos'); +#+end_src + +* From accelerometer DOFs to solid body DOFs - Mathematics +Let's consider the schematic shown on figure [[fig:local_to_global_coordinates]] where we are measuring the motion of a (supposed) solid body at 4 distinct points in x-y-z. + +The goal here is to link these $4 \times 3 = 12$ measurements to the 6 DOFs of the solid body expressed in the frame $\{O\}$. + +#+begin_src latex :file local_to_global_coordinates.pdf :post pdf2svg(file=*this*, ext="png") :exports results + \newcommand\irregularcircle[2]{% radius, irregularity + \pgfextra {\pgfmathsetmacro\len{(#1)+rand*(#2)}} + +(0:\len pt) + \foreach \a in {10,20,...,350}{ + \pgfextra {\pgfmathsetmacro\len{(#1)+rand*(#2)}} + -- +(\a:\len pt) + } -- cycle + } + \begin{tikzpicture} + \draw[rounded corners=1mm, fill=blue!30!white] (0, 0) \irregularcircle{3cm}{1mm}; + + \node[] (origin) at (4, -1) {$\bullet$}; + \begin{scope}[shift={(origin)}] + \def\axissize{0.8cm} + \draw[->] (0, 0) -- ++(\axissize, 0) node[above left]{$x$}; + \draw[->] (0, 0) -- ++(0, \axissize) node[below right]{$y$}; + \draw[fill, color=black] (0, 0) circle (0.05*\axissize); + \node[draw, circle, inner sep=0pt, minimum size=0.4*\axissize, label=left:$z$] (yaxis) at (0, 0){}; + \node[below right] at (0, 0){$\{O\}$}; + \end{scope} + + \coordinate[] (p1) at (-1.5, -1.5); + \coordinate[] (p2) at (-1.5, 1.5); + \coordinate[] (p3) at ( 1.5, 1.5); + \coordinate[] (p4) at ( 1.5, -1.5); + + \draw[->] (p1)node[]{$\bullet$}node[above]{$p_1$} -- ++(1, 0.5)node[right]{$v_1$}; + \draw[->] (p2)node[]{$\bullet$}node[above]{$p_2$} -- ++(-0.5, 1)node[right]{$v_2$}; + \draw[->] (p3)node[]{$\bullet$}node[above]{$p_3$} -- ++(1, 0.5)node[right]{$v_3$}; + \draw[->] (p4)node[]{$\bullet$}node[above]{$p_4$} -- ++(0.5, 1)node[right]{$v_4$}; + \end{tikzpicture} +#+end_src + +#+name: fig:local_to_global_coordinates +#+caption: Schematic of the measured motions of a solid body +#+RESULTS: +[[file:figs/local_to_global_coordinates.png]] + +From the figure [[fig:local_to_global_coordinates]], we can write: +\begin{align*} + \vec{v}_1 &= \vec{v} + \Omega \vec{p}_1\\ + \vec{v}_2 &= \vec{v} + \Omega \vec{p}_2\\ + \vec{v}_3 &= \vec{v} + \Omega \vec{p}_3\\ + \vec{v}_4 &= \vec{v} + \Omega \vec{p}_4 +\end{align*} + +With +\begin{equation} + \Omega = \begin{bmatrix} + 0 & -\Omega_z & \Omega_y \\ + \Omega_z & 0 & -\Omega_x \\ + -\Omega_y & \Omega_x & 0 +\end{bmatrix} +\end{equation} +$\vec{v}$ and $\Omega$ represent to velocity and rotation of the solid expressed in the frame $\{O\}$. + +We can rearrange the equations in a matrix form: + +\begin{equation} +\left[\begin{array}{ccc|ccc} + 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ + 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ + 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline + & \vdots & & & \vdots & \\ \hline + 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ + 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ + 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 +\end{array}\right] \begin{bmatrix} + v_x \\ v_y \\ v_z \\ \hline \Omega_x \\ \Omega_y \\ \Omega_z +\end{bmatrix} = \begin{bmatrix} + v_{1x} \\ v_{1y} \\ v_{1z} \\\hline \vdots \\\hline v_{4x} \\ v_{4y} \\ v_{4z} +\end{bmatrix} +\end{equation} + +and then we obtain the velocity and rotation of the solid in the wanted frame $\{O\}$: +\begin{equation} +\begin{bmatrix} + v_x \\ v_y \\ v_z \\ \hline \Omega_x \\ \Omega_y \\ \Omega_z +\end{bmatrix} = +\left[\begin{array}{ccc|ccc} + 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ + 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ + 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline + & \vdots & & & \vdots & \\ \hline + 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ + 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ + 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 +\end{array}\right]^{-1} \begin{bmatrix} + v_{1x} \\ v_{1y} \\ v_{1z} \\\hline \vdots \\\hline v_{4x} \\ v_{4y} \\ v_{4z} +\end{bmatrix} +\end{equation} + +This inversion is equivalent to resolving a mean square problem. + +* What reference frame to choose? +The question we wish here to answer is how to choose the reference frame $\{O\}$ in which the DOFs of the solid bodies are defined. + +The goal is to compare the motion of each solid body to see which relative DOFs between solid bodies can be neglected, that is to say, which joint between solid bodies can be regarded as perfect (and this in all the frequency range of interest). +Ideally, we would like to have the same number of degrees of freedom than the number of identified modes. + +The possibles choices are: +- *One frame for each solid body* which is located at its center of mass +- *One common frame*, for instance located at the point of interest ($270mm$ above the Hexapod) +- *Base located at the joint position*: this is where we want to see the motion and estimate stiffness + +#+name: tab:frame_comparison +#+caption: Advantages and disadvantages for the choice of reference frame +| Chosen Frame | Advantages | Disadvantages | +|--------------------------+-----------------------------------------------------+------------------------------------------------------| +| Frames at CoM | Physically, it makes more sense | How to compare the motion of the solid bodies? | +| Common Frame | We can compare the motion of each solid body | Small $\theta_{x, y}$ may result in large $T_{x, y}$ | +| Frames at joint position | Directly gives which joint direction can be blocked | How to choose the joint position? | + +As the easiest choice is to choose a common frame, we start with that solution. + +* From accelerometer DOFs to solid body DOFs - Matlab Implementation +First, we initialize a new FRF matrix =FRFs_O= which is an $n \times p \times q$ with: +- $n$ is the number of DOFs of the considered 6 solid-bodies: $6 \times 6 = 36$ +- $p$ is the number of excitation inputs: $3$ +- $q$ is the number of frequency points $\omega_i$ + +#+begin_src matlab + FRFs_O = zeros(length(solid_names)*6, 3, 801); +#+end_src + +Then, as we know the positions of the accelerometers on each solid body, and we have the response of those accelerometers, we can use the equations derived in the previous section to determine the response of each solid body expressed in the frame $\{O\}$. +#+begin_src matlab + for solid_i = 1:length(solid_names) + solids_i = solids.(solid_names{solid_i}); + + A = zeros(3*length(solids_i), 6); + for i = 1:length(solids_i) + acc_i = solids_i(i); + + A(3*(i-1)+1:3*i, 1:3) = eye(3); + A(3*(i-1)+1:3*i, 4:6) = [ 0 acc_pos(acc_i, 3) -acc_pos(acc_i, 2) ; + -acc_pos(acc_i, 3) 0 acc_pos(acc_i, 1) ; + acc_pos(acc_i, 2) -acc_pos(acc_i, 1) 0]; + end + + for exc_dir = 1:3 + FRFs_O((solid_i-1)*6+1:solid_i*6, exc_dir, :) = A\squeeze(FRFs((solids_i(1)-1)*3+1:solids_i(end)*3, exc_dir, :)); + end + end +#+end_src + +* Analysis of some FRF in the global coordinates +First, we can compare the motions of the 6 solid bodies in one direction (figure [[fig:frf_all_bodies_one_direction]]) + +We can also compare all the DOFs of one solid body (figure [[fig:frf_one_body_all_directions]]). + +#+begin_src matlab :exports none + exc_names = {'$F_x$', '$F_y$', '$F_z$'}; + DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'} + solids_i = 1:6; + dir_i = 1; + exc_dir = 1; + + figure; + + ax1 = subaxis(2, 1, 1); + hold on; + for solid_i = solids_i + plot(freqs, abs(squeeze(FRFs_O((solid_i-1)*6+dir_i, exc_dir, :))), 'DisplayName', solid_names{solid_i}); + end + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Amplitude'); + legend('Location', 'northwest'); + title(sprintf('FRF between %s and %s', exc_names{exc_dir}, DOFs{dir_i})); + + ax2 = subaxis(2, 1, 2); + hold on; + for solid_i = solids_i + plot(freqs, mod(180+180/pi*phase(squeeze(FRFs_O((solid_i-1)*6+dir_i, exc_dir, :))), 360)-180); + end + hold off; + ylim([-180, 180]); yticks(-180:90:180); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'xscale', 'log'); + + linkaxes([ax1,ax2],'x'); + xlim([1, 200]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/frf_all_bodies_one_direction.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:frf_all_bodies_one_direction +#+CAPTION: FRFs of all the 6 solid bodies in one direction +[[file:figs/frf_all_bodies_one_direction.png]] + +#+begin_src matlab :exports none + DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'} + solid_i = 3; + dirs_i = 1:6; + exc_dir = 1; + + figure; + + ax1 = subplot(2, 1, 1); + hold on; + for dir_i = dirs_i + plot(freqs, abs(squeeze(FRFs_O((solid_i-1)*6+dir_i, exc_dir, :))), 'DisplayName', DOFs{dir_i}); + end + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Amplitude'); + legend('Location', 'northwest'); + title(sprintf('Motion of %s due to %s', solid_names{solid_i}, exc_names{exc_dir})); + + ax2 = subplot(2, 1, 2); + hold on; + for dir_i = dirs_i + plot(freqs, mod(180+180/pi*phase(squeeze(FRFs_O((solid_i-1)*6+dir_i, exc_dir, :))), 360)-180); + end + hold off; + ylim([-180, 180]); yticks(-180:90:180); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'xscale', 'log'); + + linkaxes([ax1,ax2],'x'); + xlim([1, 200]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/frf_one_body_all_directions.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:frf_one_body_all_directions +#+CAPTION: FRFs of one solid body in all its DOFs +[[file:figs/frf_one_body_all_directions.png]] + +* TODO How to compare the relative motion of solid bodies +We have some of elements of the full FRF matrix: +\[ \frac{D_{1x}}{F_x},\ \frac{D_{1y}}{F_x},\ \frac{D_{1z}}{F_x},\ \frac{D_{2x}}{F_x},\ \dots \] + +\[ \frac{D_{1x}}{D_{2x}} = \frac{\frac{D_{1x}}{F_x}}{\frac{D_{2x}}{F_x}} \] +Then, if $\left| \frac{D_{1x}}{D_{2x}} \right| \approx 1$ in all the frequency band of interest, we can block the $x$ motion between the solids 1 and 2. + +\[ \frac{D_{2x} - D_{1x}}{D_{1x} + D_{2x}} = \frac{\frac{D_{2x}}{F_x} - \frac{D_{1x}}{F_x}}{\frac{D_{1x}}{F_x} + \frac{D_{2x}}{F_x}} \] + +Then if $\left| \frac{D_{2x} - D_{1x}}{D_{1x} + D_{2x}} \right| \ll 1$ in all the frequency band of interest, we can block the $x$ motion between the solids 1 and 2. + +* Relative Motion in the global coordinates +Below we plot the normalized relative motion between each stage: +\[ 0 < \frac{\left| D_{ix} - D_{jx} \right|}{|D_{ix}| + |D_{jx}|} < 1 \] + +#+begin_src matlab + DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'} + + dirs_i = 1:6; + exc_dir = 1; + + figure; + + for i = 2:6 + subaxis(3, 2, i); + hold on; + for dir_i = dirs_i + H = (squeeze(FRFs_O((i-1)*6+dir_i, exc_dir, :))-squeeze(FRFs_O((i-2)*6+dir_i, exc_dir, :)))./(abs(squeeze(FRFs_O((i-1)*6+dir_i, exc_dir, :)))+abs(squeeze(FRFs_O((i-2)*6+dir_i, exc_dir, :)))); + plot(freqs, abs(H)); + end + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); + xlim([1, 200]); ylim([0, 1]); + % xlabel('Frequency [Hz]'); ylabel('Relative Motion'); + title(sprintf('Normalized motion %s - %s', solid_names{i-1}, solid_names{i})); + if i > 4 + xlabel('Frequency [Hz]'); + else + set(gca, 'XTickLabel',[]); + end + end + + for i = 1:length(dirs_i) + legend_names{i} = DOFs{dirs_i(i)}; + end + lgd = legend(legend_names); + + hL = subplot(3, 2, 1); + poshL = get(hL,'position'); + + set(lgd,'position', poshL); + axis(hL, 'off'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/relative_motion_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:relative_motion_comparison +#+CAPTION: Relative motion between each stage +[[file:figs/relative_motion_comparison.png]] + +* TODO Compare original FRF measurements to transformed FRF in the global frame +We wish here to compare the FRF in order to verify if there is any mistake. + +#+begin_src matlab + dir_names = {'X', 'Y', 'Z', '$\theta_X$', '$\theta_Y$', '$\theta_Z$'}; + + solid_i = 6; + acc_dir_O = 1; + acc_dir = 1; + exc_dir = 1; + + figure; + + ax1 = subplot(2, 1, 1); + hold on; + for i = solids.(solid_names{solid_i}) + plot(freqs, abs(squeeze(FRFs(acc_dir+3*(i-1), exc_dir, :)))); + end + plot(freqs, abs(squeeze(FRFs_O((solid_i-1)*6+acc_dir_O, exc_dir, :))), '-k'); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Amplitude'); + title(sprintf('%s motion measured by the Acc. vs %s motion computed in the common frame - %s', dir_names{acc_dir}, dir_names{acc_dir_O}, solid_names{solid_i})); + + ax2 = subplot(2, 1, 2); + hold on; + for i = solids.(solid_names{solid_i}) + plot(freqs, mod(180+180/pi*phase(squeeze(FRFs(acc_dir+3*(i-1), exc_dir, :))), 360)-180); + end + plot(freqs, mod(180+180/pi*phase(squeeze(FRFs_O((solid_i-1)*6+acc_dir_O, exc_dir, :))), 360)-180, '-k'); + hold off; + ylim([-180, 180]); yticks(-180:90:180); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'xscale', 'log'); + + linkaxes([ax1,ax2],'x'); + xlim([1, 200]); +#+end_src + +* Verify that we find the original FRF from the FRF in the global coordinates +We have computed the Frequency Response Functions Matrix =FRFs_O= representing the response of the 6 solid bodies in their 6 DOFs. + +From the response of one body in its 6 DOFs, we should be able to compute the FRF of each of its accelerometer fixed to it during the measurement. + +We can then compare the result with the original measurements. +This will help us to determine if: +- the previous inversion used is correct +- the solid body assumption is correct in the frequency band of interest + +#+begin_src matlab + FRF_recovered = zeros(size(FRFs)); + + % For each excitation direction + for exc_dir = 1:3 + % For each solid + for solid_i = 1:length(solid_names) + v0 = squeeze(FRFs_O((solid_i-1)*6+1:(solid_i-1)*6+3, exc_dir, :)); + W0 = squeeze(FRFs_O((solid_i-1)*6+4:(solid_i-1)*6+6, exc_dir, :)); + + % For each accelerometer attached to the current solid + for acc_i = solids.(solid_names{solid_i}) + % We get the position of the accelerometer expressed in frame O + pos = acc_pos(acc_i, :)'; + posX = [0 pos(3) -pos(2); -pos(3) 0 pos(1) ; pos(2) -pos(1) 0]; + [0 acc_pos(i, 3) -acc_pos(i, 2) ; -acc_pos(i, 3) 0 acc_pos(i, 1) ; acc_pos(i, 2) -acc_pos(i, 1) 0] + + FRF_recovered(3*(acc_i-1)+1:3*(acc_i-1)+3, exc_dir, :) = v0 + posX*W0; + end + end + end +#+end_src + +We then compare the original FRF measured for each accelerometer with the recovered FRF from the global FRF matrix in the common frame. + +The FRF for the 4 accelerometers on the Hexapod are compared on figure [[fig:recovered_frf_comparison_hexa]]. +All the FRF are matching very well in all the frequency range displayed. + +The FRF for accelerometers located on the translation stage are compared on figure [[fig:recovered_frf_comparison_ty]]. +The FRF are matching well until 100Hz. + +#+begin_src matlab :exports none + exc_names = {'$F_x$', '$F_y$', '$F_z$'}; + DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'} + + solid_i = 6; + exc_dir = 1; + + accs_i = solids.(solid_names{solid_i}); + + figure; + + for i = 1:length(accs_i) + acc_i = accs_i(i); + + subaxis(2, 2, i); + + hold on; + for dir_i = 1:3 + plot(freqs, abs(squeeze(FRFs(3*(acc_i-1)+dir_i, exc_dir, :))), '-', 'DisplayName', DOFs{dir_i}); + end + set(gca,'ColorOrderIndex',1) + for dir_i = 1:3 + plot(freqs, abs(squeeze(FRF_recovered(3*(acc_i-1)+dir_i, exc_dir, :))), '--', 'HandleVisibility', 'off'); + end + hold off; + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + if i > 2 + xlabel('Frequency [Hz]'); + else + set(gca, 'XTickLabel',[]); + end + + if rem(i, 2) == 1 + ylabel('Amplitude'); + end + + xlim([1, 200]); + title(sprintf('Accelerometer %i', accs_i(i))); + legend('location', 'northwest'); + end +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/recovered_frf_comparison_hexa.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:recovered_frf_comparison_hexa +#+CAPTION: Comparison of the original FRF with the recovered ones - Hexapod +[[file:figs/recovered_frf_comparison_hexa.png]] + +#+begin_src matlab :exports none + exc_names = {'$F_x$', '$F_y$', '$F_z$'}; + DOFs = {'$T_x$', '$T_y$', '$T_z$', '$\theta_x$', '$\theta_y$', '$\theta_z$'} + + solid_i = 3; + exc_dir = 1; + + accs_i = solids.(solid_names{solid_i}); + + figure; + + for i = 1:length(accs_i) + acc_i = accs_i(i); + + subaxis(2, 2, i); + + hold on; + for dir_i = 1:3 + plot(freqs, abs(squeeze(FRFs(3*(acc_i-1)+dir_i, exc_dir, :))), '-', 'DisplayName', DOFs{dir_i}); + end + set(gca,'ColorOrderIndex',1) + for dir_i = 1:3 + plot(freqs, abs(squeeze(FRF_recovered(3*(acc_i-1)+dir_i, exc_dir, :))), '--', 'HandleVisibility', 'off'); + end + hold off; + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + if i > 2 + xlabel('Frequency [Hz]'); + else + set(gca, 'XTickLabel',[]); + end + + if rem(i, 2) == 1 + ylabel('Amplitude'); + end + + xlim([1, 200]); + title(sprintf('Accelerometer %i', accs_i(i))); + legend('location', 'northwest'); + end +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/recovered_frf_comparison_ty.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:recovered_frf_comparison_ty +#+CAPTION: Comparison of the original FRF with the recovered ones - Ty +[[file:figs/recovered_frf_comparison_ty.png]] + + +#+begin_important + The reduction of the number of degrees of freedom from 69 (23 accelerometers with each 3DOF) to 36 (6 solid bodies with 6 DOF) seems to work well. + + This confirms the fact that the stages are indeed behaving as a solid body in the frequency band of interest. + This valid the fact that a multi-body model can be used to represent the dynamics of the micro-station. +#+end_important + +* Importation of measured FRF curves :noexport:ignore: +There are 24 measurements files corresponding to 24 series of impacts: +- 3 directions, 8 sets of 3 accelerometers +For each measurement file, the FRF and coherence between the impact and the 9 accelerations measured. + +In reality: 4 sets of 10 things + +#+begin_src matlab + a = load('mat/meas_frf_coh_1.mat'); +#+end_src + +#+begin_src matlab + figure; + + ax1 = subplot(2, 1, 1); + hold on; + plot(a.FFT1_AvXSpc_2_1_RMS_X_Val, a.FFT1_AvXSpc_2_1_RMS_Y_Mod) + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Amplitude'); + title(sprintf('From %s, to %s', FFT1_AvXSpc_2_1_RfName, FFT1_AvXSpc_2_1_RpName)) + + ax2 = subplot(2, 1, 2); + hold on; + plot(a.FFT1_AvXSpc_2_1_RMS_X_Val, a.FFT1_AvXSpc_2_1_RMS_Y_Phas) + hold off; + ylim([-180, 180]); yticks(-180:90:180); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'xscale', 'log'); + + linkaxes([ax1,ax2],'x'); + xlim([1, 200]); +#+end_src + +* Analysis of some FRFs :noexport:ignore: +#+begin_src matlab + acc_i = 3; + acc_dir = 1; + exc_dir = 1; + + figure; + + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, abs(squeeze(FRFs(acc_dir+3*(acc_i-1), exc_dir, :)))); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Amplitude'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, mod(180+180/pi*phase(squeeze(FRFs(acc_dir+3*(acc_i-1), exc_dir, :))), 360)-180); + hold off; + ylim([-180, 180]); yticks(-180:90:180); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'xscale', 'log'); + + linkaxes([ax1,ax2],'x'); + xlim([1, 200]); +#+end_src + + +#+begin_src matlab + figure; + hold on; + for i = 1:3*n_acc + plot(freqs, squeeze(COHs(i, 1, :)), 'color', [0, 0, 0, 0.2]); + end + hold off; + xlabel('Frequency [Hz]'); + ylabel('Coherence [\%]'); +#+end_src + + +Composite Response Function. + +We here sum the norm instead of the complex numbers. + +#+begin_src matlab + HHx = squeeze(sum(abs(FRFs(:, 1, :)))); + HHy = squeeze(sum(abs(FRFs(:, 2, :)))); + HHz = squeeze(sum(abs(FRFs(:, 3, :)))); + HH = squeeze(sum([HHx, HHy, HHz], 2)); +#+end_src + +#+begin_src matlab + exc_dir = 3; + + figure; + hold on; + for i = 1:3*n_acc + plot(freqs, abs(squeeze(FRFs(i, exc_dir, :))), 'color', [0, 0, 0, 0.2]); + end + plot(freqs, abs(HHx)); + plot(freqs, abs(HHy)); + plot(freqs, abs(HHz)); + plot(freqs, abs(HH), 'k'); + hold off; + set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); + xlabel('Frequency [Hz]'); ylabel('Amplitude'); + xlim([1, 200]); +#+end_src diff --git a/modal-analysis/mat/acc_pos.txt b/modal-analysis/mat/acc_pos.txt index 0fa610c..cff83e4 100644 --- a/modal-analysis/mat/acc_pos.txt +++ b/modal-analysis/mat/acc_pos.txt @@ -17,7 +17,7 @@ 7 4.2000e-001 2.8000e-001 -4.1680e-001 6 -4.2000e-001 2.8000e-001 -4.1680e-001 5 -3.8500e-001 -3.0000e-001 -4.1680e-001 - 4 6.4000e-002 -6.4000e-002 -2.9600e-001 - 3 6.4000e-002 6.4000e-002 -2.9600e-001 - 2 -6.4000e-002 6.4000e-002 -2.9600e-001 - 1 -6.4000e-002 -6.4000e-002 -2.9600e-001 + 4 6.4000e-002 -6.4000e-002 -2.7000e-001 + 3 6.4000e-002 6.4000e-002 -2.7000e-001 + 2 -6.4000e-002 6.4000e-002 -2.7000e-001 + 1 -6.4000e-002 -6.4000e-002 -2.7000e-001 diff --git a/modal-analysis/mathematical_model.org b/modal-analysis/mathematical_model.org index f4e45eb..4f01b09 100644 --- a/modal-analysis/mathematical_model.org +++ b/modal-analysis/mathematical_model.org @@ -60,3 +60,35 @@ However, each of the DOF of the system may not be relevant for the modes present For instance, the translation stage may not vibrate in the Z direction for all the modes identified. Then, we can block this DOF and this simplifies the model. The modal identification done here will thus permit us to determine *which DOF can be neglected*. + +* Some notes about constraining the number of degrees of freedom +We want to have the two eigen matrices. + +They should have the same size $n \times n$ where $n$ is the number of modes as well as the number of degrees of freedom. +Thus, if we consider 21 modes, we should restrict our system to have only 21 DOFs. + +Actually, we are measured 6 DOFs of 6 solids, thus we have 36 DOFs. + +From the mode shapes animations, it seems that in the frequency range of interest, the two marbles can be considered as one solid. +We thus have 5 solids and 30 DOFs. + + +In order to determine which DOF can be neglected, two solutions seems possible: +- compare the mode shapes +- compare the FRFs + +The question is: in which base (frame) should be express the modes shapes and FRFs? +Is it meaningful to compare mode shapes as they give no information about the amplitudes of vibration? + + +| Stage | Motion DOFs | Parasitic DOF | Total DOF | Description of DOF | +|---------+-------------+---------------+-----------+--------------------| +| Granite | 0 | 3 | 3 | | +| Ty | 1 | 2 | 3 | Ty, Rz | +| Ry | 1 | 2 | 3 | Ry, | +| Rz | 1 | 2 | 3 | Rz, Rx, Ry | +| Hexapod | 6 | 0 | 6 | Txyz, Rxyz | +|---------+-------------+---------------+-----------+--------------------| +| | 9 | 9 | 18 | | +#+TBLFM: $4=vsum($2..$3) +#+TBLFM: @>$2..$>=vsum(@I..@II) diff --git a/modal-analysis/matlab/modal_frf_coh.m b/modal-analysis/matlab/modal_frf_coh.m index 7960cf3..6c6a93e 100644 --- a/modal-analysis/matlab/modal_frf_coh.m +++ b/modal-analysis/matlab/modal_frf_coh.m @@ -4,6 +4,21 @@ clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); + + +% We then import that on =matlab=, and sort them. + +acc_pos = readtable('mat/acc_pos.txt', 'ReadVariableNames', false); +acc_pos = table2array(acc_pos(:, 1:4)); +[~, i] = sort(acc_pos(:, 1)); +acc_pos = acc_pos(i, 2:4); + + + +% The positions of the sensors relative to the point of interest are shown below. + +data2orgtable([[1:23]', 1000*acc_pos], {}, {'ID', 'x [mm]', 'y [mm]', 'z [mm]'}, ' %.0f '); + % Windowing % Windowing is used on the force and response signals. @@ -301,9 +316,6 @@ for i = 1:n_meas meas_factor = meas_factor*(-1); end - % FRFs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); - % COHs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); - FRFs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); COHs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); end @@ -315,3 +327,30 @@ freqs = meas.FFT1_Coh_10_1_RMS_X_Val; % And we save the obtained FRF matrix and Coherence matrix in a =.mat= file. save('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs'); + +% Solid Bodies considered for further analysis +% We consider the following solid bodies for further analysis: +% - Bottom Granite +% - Top Granite +% - Translation Stage +% - Tilt Stage +% - Spindle +% - Hexapod + +% We create a =matlab= structure =solids= that contains the accelerometers ID connected to each solid bodies (as shown on figure [[fig:nass-modal-test]]). + +solids = {}; +solids.granite_bot = [17, 18, 19, 20]; +solids.granite_top = [13, 14, 15, 16]; +solids.ty = [9, 10, 11, 12]; +solids.ry = [5, 6, 7, 8]; +solids.rz = [21, 22, 23]; +solids.hexa = [1, 2, 3, 4]; + +solid_names = fields(solids); + + + +% Finally, we save that into a =.mat= file. + +save('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos'); diff --git a/modal-analysis/measurement.html b/modal-analysis/measurement.html index 9b939f4..b6d5ad2 100644 --- a/modal-analysis/measurement.html +++ b/modal-analysis/measurement.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Modal Analysis - Measurement @@ -280,30 +280,34 @@ for the JavaScript code in this tag.

Table of Contents

@@ -315,20 +319,29 @@ All the files (data and Matlab scripts) are accessible -

1 Instrumentation Used

+
+

1 Goal

+The goal is to measure the dynamic of the Micro-Station and to extract Frequency Response Functions. +

+
+
+ +
+

2 Instrumentation Used

+
+

In order to perform to Modal Analysis and to obtain first a Response Model, the following devices are used:

    -
  • An acquisition system (OROS) with 24bits ADCs (figure 1)
  • -
  • 3 tri-axis Accelerometers (figure 2) with parameters shown on table 1
  • -
  • An Instrumented Hammer with various Tips (figure 3) (figure 4)
  • +
  • An acquisition system (OROS) with 24bits ADCs (figure 1)
  • +
  • 3 tri-axis Accelerometers (figure 2) with parameters shown on table 1
  • +
  • An Instrumented Hammer with various Tips (figure 3) (figure 4)
-
+

oros.png

Figure 1: Acquisition system: OROS

@@ -341,13 +354,13 @@ Anti-aliasing filters are also included in the system.

-
+

accelero_M393B05.png

Figure 2: Accelerometer used: M393B05

- +
@@ -390,14 +403,14 @@ It excites more the low frequency range where the coherence is low, the overall

-
+

instrumented_hammer.png

Figure 3: Instrumented Hammer

-
+

hammer_tips.png

Figure 4: Hammer tips

@@ -409,13 +422,13 @@ The accelerometers are glued on the structure.
-
-

2 Structure Preparation and Test Planning

-
+
+

3 Structure Preparation and Test Planning

+
-
-

2.1 Structure Preparation

-
+
+

3.1 Structure Preparation

+

All the stages are turned ON. This is done for two reasons: @@ -457,9 +470,9 @@ All other elements have been remove from the granite such as another heavy posit

-
-

2.2 Test Planing

-
+
+

3.2 Test Planing

+

The goal is to identify the full \(N \times N\) FRF matrix (where \(N\) is the number of degree of freedom of the system).

@@ -491,9 +504,9 @@ The measurement thus consists of:
-
-

2.3 Location of the Accelerometers

-
+
+

3.3 Location of the Accelerometers

+

4 tri-axis accelerometers are used for each solid body.

@@ -511,11 +524,11 @@ The position of the accelerometers are:

  • 4 on the first granite
  • -
  • 4 on the second granite (figure 5)
  • -
  • 4 on top of the translation stage (figure 6)
  • +
  • 4 on the second granite (figure 5)
  • +
  • 4 on top of the translation stage (figure 6)
  • 4 on top of the tilt stage
  • 3 on top of the spindle
  • -
  • 4 on top of the hexapod (figure 7)
  • +
  • 4 on top of the hexapod (figure 7)

@@ -523,43 +536,43 @@ In total, 23 accelerometers are used: 69 DOFs are thus measured.

-The position and orientation of all the accelerometers used are shown on figure 8. +The position and orientation of all the accelerometers used are shown on figure 8.

-The precise determination of the position of each accelerometer is done using the SolidWorks model (shown on figure 9). +The precise determination of the position of each accelerometer is done using the SolidWorks model (shown on figure 9).

-
+

accelerometers_granite2_overview.jpg

Figure 5: Accelerometers located on the top granite

-
+

accelerometers_ty_overview.jpg

Figure 6: Accelerometers located on top of the translation stage

-
+

accelerometers_hexa_overview.jpg

Figure 7: Accelerometers located on the Hexapod

-
+

nass-modal-test.png

Figure 8: Position and orientation of the accelerometer used

-
+

location_accelerometers.png

Figure 9: Position of the accelerometers using SolidWorks

@@ -569,9 +582,27 @@ The precise determination of the position of each accelerometer is done using th The precise position of all the 23 accelerometer with respect to a frame located at the point of interest (located 270mm above the top platform of the hexapod) is shown below. The values are in meter. They are contained in the mat/id31_nanostation.cfg file.

+
+
cat mat/id31_nanostation.cfg | grep NODES -A 23 | sed '/\s\+[0-9]\+/!d' | sed 's/\(.*\)\s\+0\s\+.\+/\1/' > mat/acc_pos.txt
+
+
-
Table 1: 393B05 Accelerometer Data Sheet
+

+We then import that on matlab, and sort them. +

+
+
acc_pos = readtable('mat/acc_pos.txt', 'ReadVariableNames', false);
+acc_pos = table2array(acc_pos(:, 1:4));
+[~, i] = sort(acc_pos(:, 1));
+acc_pos = acc_pos(i, 2:4);
+
+
+

+The positions of the sensors relative to the point of interest are shown below (table 2). +

+
+@@ -585,186 +616,186 @@ They are contained in the mat/id31_nanostation.cfg file. - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + +
Table 2: position of the accelerometers
IDX[m]Y[m]Z[m]x [mm]y [mm]z [mm]
1-6.4000e-002-6.4000e-002-2.7000e-001-64-64-270
2-6.4000e-0026.4000e-002-2.7000e-001-6464-270
36.4000e-0026.4000e-002-2.7000e-0016464-270
46.4000e-002-6.4000e-002-2.7000e-00164-64-270
5-3.8500e-001-3.0000e-001-4.1680e-001-385-300-417
6-4.2000e-0012.8000e-001-4.1680e-001-420280-417
74.2000e-0012.8000e-001-4.1680e-001420280-417
83.8000e-001-3.0000e-001-4.1680e-001380-300-417
9-4.7500e-001-4.1400e-001-4.2730e-001-475-414-427
10-4.6500e-0014.0700e-001-4.2730e-001-465407-427
114.7500e-0014.2400e-001-4.2730e-001475424-427
124.7500e-001-4.1900e-001-4.2730e-001475-419-427
13-3.2000e-001-4.4600e-001-7.8560e-001-320-446-786
14-4.8000e-0015.3400e-001-7.8560e-001-480534-786
154.5000e-0015.3400e-001-7.8560e-001450534-786
162.9500e-001-4.8100e-001-7.8560e-001295-481-786
17-7.3000e-001-5.2600e-001-9.5060e-001-730-526-951
18-7.3500e-0018.1400e-001-9.5060e-001-735814-951
198.7500e-0017.9900e-001-9.5060e-001875799-951
208.6490e-001-5.0600e-001-9.5060e-001865-506-951
21-1.5500e-001-9.0000e-002-5.9400e-001-155-90-594
220.0000e+0001.8000e-001-5.9400e-0010180-594
231.5500e-001-9.0000e-002-5.9400e-001155-90-594
-
-

2.4 Hammer Impacts

-
+
+

3.4 Hammer Impacts

+

Only 3 impact points are used.

-The impact points are shown on figures 10, 11 and 12. +The impact points are shown on figures 10, 11 and 12.

@@ -772,21 +803,21 @@ We chose this excitation point as it seems to excite all the modes in the freque

-
+

hammer_x.gif

Figure 10: Hammer Blow in the X direction

-
+

hammer_y.gif

Figure 11: Hammer Blow in the Y direction

-
+

hammer_z.gif

Figure 12: Hammer Blow in the Z direction

@@ -795,20 +826,20 @@ We chose this excitation point as it seems to excite all the modes in the freque
-
-

3 Signal Processing

-
+
+

4 Signal Processing

+
-
-

3.1 Averaging

-
+
+

4.1 Averaging

+

The measurements are averaged 10 times corresponding to 10 hammer impacts in order to reduce the effect of random noise. -The parameters for the impact test are shown on table 2. +The parameters for the impact test are shown on table 3.

- - +
Table 2: Impact test parameters
+@@ -845,15 +876,15 @@ The parameters for the impact test are shown on table 2 -
-

3.2 Windowing

-
+
+

4.2 Windowing

+

Windowing is used on the force and response signals.

-A boxcar window (figure 13) is used for the force signal as once the impact on the structure is done, the measured signal is meaningless. +A boxcar window (figure 13) is used for the force signal as once the impact on the structure is done, the measured signal is meaningless. The parameters are:

    @@ -862,14 +893,14 @@ The parameters are:
-
+

windowing_force_signal.png

Figure 13: Window used for the force signal

-An exponential window (figure 14) is used for the response signal as we are measuring transient signals and most of the information is located at the beginning of the signal. +An exponential window (figure 14) is used for the response signal as we are measuring transient signals and most of the information is located at the beginning of the signal. The parameters are:

    @@ -886,7 +917,7 @@ The parameters are:
-
+

windowing_response_signal.png

Figure 14: Window used for the response signals

@@ -895,9 +926,9 @@ The parameters are:
-
-

4 Force and Response signals

-
+
+

5 Force and Response signals

+

Let's load some obtained data to look at the force and response signals.

@@ -908,33 +939,33 @@ Let's load some obtained data to look at the force and response signals.
-
-

4.1 Raw Force Data

-
+
+

5.1 Raw Force Data

+

-The force input for the first measurement is shown on figure 15. We can see 10 impacts, one zoom on one impact is shown on figure 16. +The force input for the first measurement is shown on figure 15. We can see 10 impacts, one zoom on one impact is shown on figure 16.

-The Fourier transform of the force is shown on figure 17. This has been obtained without any windowing. +The Fourier transform of the force is shown on figure 17. This has been obtained without any windowing.

-
+

raw_data_force.png

Figure 15: Raw Force Data from Hammer Blow

-
+

raw_data_force_zoom.png

Figure 16: Raw Force Data from Hammer Blow - Zoom

-
+

fourier_transfor_force_impact.png

Figure 17: Fourier Transform of the 10 force impacts for the first measurement

@@ -942,33 +973,33 @@ The Fourier transform of the force is shown on figure 17
-
-

4.2 Raw Response Data

-
+
+

5.2 Raw Response Data

+

-The response signal for the first measurement is shown on figure 18. One zoom on one response is shown on figure 19. +The response signal for the first measurement is shown on figure 18. One zoom on one response is shown on figure 19.

-The Fourier transform of the response signals is shown on figure 20. This has been obtained without any windowing. +The Fourier transform of the response signals is shown on figure 20. This has been obtained without any windowing.

-
+

raw_data_acceleration.png

Figure 18: Raw Acceleration Data from Accelerometer

-
+

raw_data_acceleration_zoom.png

Figure 19: Raw Acceleration Data from Accelerometer - Zoom

-
+

fourier_transform_response_signals.png

Figure 20: Fourier transform of the measured response signals

@@ -976,15 +1007,15 @@ The Fourier transform of the response signals is shown on figure -

4.3 Computation of one Frequency Response Function

-
+
+

5.3 Computation of one Frequency Response Function

+

Now that we have obtained the Fourier transform of both the force input and the response signal, we can compute the Frequency Response Function from the force to the acceleration.

-We then compare the result obtained with the FRF computed by the modal software (figure 21). +We then compare the result obtained with the FRF computed by the modal software (figure 21).

@@ -1001,7 +1032,7 @@ In the following analysis, FRF computed from the software will be used.

-
+

frf_comparison_software.png

Figure 21: Comparison of the computed FRF from the Fourier transform and using the modal software

@@ -1010,9 +1041,9 @@ In the following analysis, FRF computed from the software will be used.
-
-

5 Frequency Response Functions and Coherence Results

-
+
+

6 Frequency Response Functions and Coherence Results

+

Let's see one computed Frequency Response Function and one coherence in order to attest the quality of the measurement.

@@ -1026,22 +1057,22 @@ First, we load the data.

-And we plot on figure 22 the frequency response function from the force applied in the \(X\) direction at the location of the accelerometer number 11 to the acceleration in the \(X\) direction as measured by the first accelerometer located on the top platform of the hexapod. +And we plot on figure 22 the frequency response function from the force applied in the \(X\) direction at the location of the accelerometer number 11 to the acceleration in the \(X\) direction as measured by the first accelerometer located on the top platform of the hexapod.

-The coherence associated is shown on figure 22. +The coherence associated is shown on figure 22.

-
+

frf_result_example.png

Figure 22: Example of one measured FRF

-
+

coh_result_example.png

Figure 23: Example of one measured Coherence

@@ -1049,9 +1080,12 @@ The coherence associated is shown on figure 22.
-
-

6 Generation of a FRF matrix and a Coherence matrix from the measurements

-
+
+

7 TODO Plot all coherences in one plot

+
+
+

8 Generation of a FRF matrix and a Coherence matrix from the measurements

+

We want here to combine all the Frequency Response Functions measured into one big array called the Frequency Response Matrix.

@@ -1128,9 +1162,6 @@ COHs = zeros(*(-1); end - % FRFs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); - % COHs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); - FRFs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); COHs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); end @@ -1145,13 +1176,140 @@ And we save the obtained FRF matrix and Coherence matrix in a .mat
save('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs');
 
+
+
+
+
+

9 Solid Bodies considered for further analysis

+
+

+We consider the following solid bodies for further analysis: +

+
    +
  • Bottom Granite
  • +
  • Top Granite
  • +
  • Translation Stage
  • +
  • Tilt Stage
  • +
  • Spindle
  • +
  • Hexapod
  • +
+ +

+We create a matlab structure solids that contains the accelerometers ID connected to each solid bodies (as shown on figure 8). +

+
+
solids = {};
+solids.gbot = [17, 18, 19, 20];
+solids.gtop = [13, 14, 15, 16];
+solids.ty   = [9, 10, 11, 12];
+solids.ry   = [5, 6, 7, 8];
+solids.rz   = [21, 22, 23];
+solids.hexa = [1, 2, 3, 4];
+
+solid_names = fields(solids);
+
+
+ +

+Finally, we save that into a .mat file. +

+
+
save('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos');
+
+
+
+
+
+

10 Notes the solid body assumption

+
+

+If we measure the motion of a rigid body along a direction \(\vec{x}\) using 2 sensors that are co-linear with the same direction \(\vec{x}\) (\(\vec{p}_2 = \vec{p}_1 + \alpha \vec{x}\)), they will measured the same quantity. +

+ +

+This is illustrated on figure 24. +

+ + +
+

aligned_accelerometers.png +

+

Figure 24: Aligned measurement of the motion of a solid body

+
+ +

+The motion of the rigid body of figure 24 is defined by the velocity \(\vec{v}\) and rotation \(\vec{\Omega}\) with respect to the reference frame \(\{O\}\). +

+ +

+The motions at points \(1\) and \(2\) are: +

+\begin{align*} + v_1 &= v + \Omega \times p_1 \\ + v_2 &= v + \Omega \times p_2 +\end{align*} + +

+Taking only the \(x\) direction: +

+\begin{align*} + v_{x1} &= v + \Omega_y p_{z1} - \Omega_z p_{y1} \\ + v_{x2} &= v + \Omega_y p_{z2} - \Omega_z p_{y2} +\end{align*} + +

+However, we have \(p_{1y} = p_{2y}\) and \(p_{1z} = p_{2z}\) because of the co-linearity of the two sensors in the \(x\) direction, and thus we obtain +

+\begin{equation} + v_{x1} = v_{x2} +\end{equation} + +
+

+Two sensors that are measuring the co-linear motion of a rigid body should measure the same quantity. +

+ +
+ +

+We can verify that the rigid body assumption is correct by comparing the measurement of the sensors. +

+ +

+From the table 2, we can guess which sensors will give the same results in the X and Y directions. +

+ +

+Comparison of such measurements in the X direction is shown on figure 25 and in the Y direction on figure 26. +

+ + +
+

compare_acc_x_dir.png +

+

Figure 25: Compare accelerometers align in the X direction

+
+ + + +
+

compare_acc_y_dir.png +

+

Figure 26: Compare accelerometers align in the Y direction

+
+ +
+

+ +

+

Author: Dehaeze Thomas

-

Created: 2019-07-03 mer. 17:24

+

Created: 2019-07-04 jeu. 17:49

Validate

diff --git a/modal-analysis/measurement.org b/modal-analysis/measurement.org index 1d83081..aa1b269 100644 --- a/modal-analysis/measurement.org +++ b/modal-analysis/measurement.org @@ -29,6 +29,16 @@ #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export + +#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}") +#+PROPERTY: header-args:latex+ :imagemagick t :fit yes +#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 +#+PROPERTY: header-args:latex+ :imoutoptions -quality 100 +#+PROPERTY: header-args:latex+ :results raw replace :buffer no +#+PROPERTY: header-args:latex+ :eval no-export +#+PROPERTY: header-args:latex+ :exports both +#+PROPERTY: header-args:latex+ :mkdirp yes +#+PROPERTY: header-args:latex+ :output-dir figs :END: * ZIP file containing the data and matlab files :ignore: @@ -57,6 +67,9 @@ <> #+end_src +* Goal +The goal is to measure the dynamic of the Micro-Station and to extract Frequency Response Functions. + * Instrumentation Used In order to perform to *Modal Analysis* and to obtain first a *Response Model*, the following devices are used: - An *acquisition system* (OROS) with 24bits ADCs (figure [[fig:oros]]) @@ -188,38 +201,51 @@ The precise determination of the position of each accelerometer is done using th The precise position of all the 23 accelerometer with respect to a frame located at the point of interest (located 270mm above the top platform of the hexapod) is shown below. The values are in meter. They are contained in the =mat/id31_nanostation.cfg= file. - -#+begin_src bash :exports results :eval no-export :post addhdr(*this*) - echo " ID X[m] Y[m] Z[m]" - cat mat/id31_nanostation.cfg | grep NODES -A 23 | sed '/\s\+[0-9]\+/!d' | sed 's/\(.*\)\s\+0\s\+.\+/\1/' | tac -- +#+begin_src bash :results none + cat mat/id31_nanostation.cfg | grep NODES -A 23 | sed '/\s\+[0-9]\+/!d' | sed 's/\(.*\)\s\+0\s\+.\+/\1/' > mat/acc_pos.txt #+end_src +We then import that on =matlab=, and sort them. +#+begin_src matlab + acc_pos = readtable('mat/acc_pos.txt', 'ReadVariableNames', false); + acc_pos = table2array(acc_pos(:, 1:4)); + [~, i] = sort(acc_pos(:, 1)); + acc_pos = acc_pos(i, 2:4); +#+end_src + +The positions of the sensors relative to the point of interest are shown below (table [[tab:position_accelerometers]]). +#+begin_src matlab :exports results :results value table replace :post addhdr(*this*) + data2orgtable([[1:23]', 1000*acc_pos], {}, {'ID', 'x [mm]', 'y [mm]', 'z [mm]'}, ' %.0f '); +#+end_src + +#+name: tab:position_accelerometers +#+caption: position of the accelerometers #+RESULTS: -| ID | X[m] | Y[m] | Z[m] | -|----+--------------+--------------+--------------| -| 1 | -6.4000e-002 | -6.4000e-002 | -2.7000e-001 | -| 2 | -6.4000e-002 | 6.4000e-002 | -2.7000e-001 | -| 3 | 6.4000e-002 | 6.4000e-002 | -2.7000e-001 | -| 4 | 6.4000e-002 | -6.4000e-002 | -2.7000e-001 | -| 5 | -3.8500e-001 | -3.0000e-001 | -4.1680e-001 | -| 6 | -4.2000e-001 | 2.8000e-001 | -4.1680e-001 | -| 7 | 4.2000e-001 | 2.8000e-001 | -4.1680e-001 | -| 8 | 3.8000e-001 | -3.0000e-001 | -4.1680e-001 | -| 9 | -4.7500e-001 | -4.1400e-001 | -4.2730e-001 | -| 10 | -4.6500e-001 | 4.0700e-001 | -4.2730e-001 | -| 11 | 4.7500e-001 | 4.2400e-001 | -4.2730e-001 | -| 12 | 4.7500e-001 | -4.1900e-001 | -4.2730e-001 | -| 13 | -3.2000e-001 | -4.4600e-001 | -7.8560e-001 | -| 14 | -4.8000e-001 | 5.3400e-001 | -7.8560e-001 | -| 15 | 4.5000e-001 | 5.3400e-001 | -7.8560e-001 | -| 16 | 2.9500e-001 | -4.8100e-001 | -7.8560e-001 | -| 17 | -7.3000e-001 | -5.2600e-001 | -9.5060e-001 | -| 18 | -7.3500e-001 | 8.1400e-001 | -9.5060e-001 | -| 19 | 8.7500e-001 | 7.9900e-001 | -9.5060e-001 | -| 20 | 8.6490e-001 | -5.0600e-001 | -9.5060e-001 | -| 21 | -1.5500e-001 | -9.0000e-002 | -5.9400e-001 | -| 22 | 0.0000e+000 | 1.8000e-001 | -5.9400e-001 | -| 23 | 1.5500e-001 | -9.0000e-002 | -5.9400e-001 | +| ID | x [mm] | y [mm] | z [mm] | +|----+--------+--------+--------| +| 1 | -64 | -64 | -270 | +| 2 | -64 | 64 | -270 | +| 3 | 64 | 64 | -270 | +| 4 | 64 | -64 | -270 | +| 5 | -385 | -300 | -417 | +| 6 | -420 | 280 | -417 | +| 7 | 420 | 280 | -417 | +| 8 | 380 | -300 | -417 | +| 9 | -475 | -414 | -427 | +| 10 | -465 | 407 | -427 | +| 11 | 475 | 424 | -427 | +| 12 | 475 | -419 | -427 | +| 13 | -320 | -446 | -786 | +| 14 | -480 | 534 | -786 | +| 15 | 450 | 534 | -786 | +| 16 | 295 | -481 | -786 | +| 17 | -730 | -526 | -951 | +| 18 | -735 | 814 | -951 | +| 19 | 875 | 799 | -951 | +| 20 | 865 | -506 | -951 | +| 21 | -155 | -90 | -594 | +| 22 | 0 | 180 | -594 | +| 23 | 155 | -90 | -594 | ** Hammer Impacts Only 3 impact points are used. @@ -635,9 +661,6 @@ We generate such FRF matrix from the measurements using the following script. meas_factor = meas_factor*(-1); end - % FRFs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); - % COHs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); - FRFs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j)); COHs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j)); end @@ -649,3 +672,221 @@ And we save the obtained FRF matrix and Coherence matrix in a =.mat= file. #+begin_src matlab save('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs'); #+end_src +* Plot showing the coherence of all the measurements +Now that we have defined a Coherence matrix, we can plot each of its elements to have an idea of the overall coherence and thus, quality of the measurement. +The result is shown on figure [[fig:all_coherence]]. + +#+begin_src matlab :exports none + n_acc = 23; + + figure; + hold on; + for i = 1:3*n_acc + plot(freqs, squeeze(COHs(i, 1, :)), 'color', [0, 0, 0, 0.2]); + end + hold off; + xlabel('Frequency [Hz]'); + ylabel('Coherence [\%]'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/all_coherence.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:all_coherence +#+CAPTION: Plot of the coherence of all the measurements +[[file:figs/all_coherence.png]] + +* Solid Bodies considered for further analysis +We consider the following solid bodies for further analysis: +- Bottom Granite +- Top Granite +- Translation Stage +- Tilt Stage +- Spindle +- Hexapod + +We create a =matlab= structure =solids= that contains the accelerometers ID connected to each solid bodies (as shown on figure [[fig:nass-modal-test]]). +#+begin_src matlab + solids = {}; + solids.gbot = [17, 18, 19, 20]; + solids.gtop = [13, 14, 15, 16]; + solids.ty = [9, 10, 11, 12]; + solids.ry = [5, 6, 7, 8]; + solids.rz = [21, 22, 23]; + solids.hexa = [1, 2, 3, 4]; + + solid_names = fields(solids); +#+end_src + +Finally, we save that into a =.mat= file. +#+begin_src matlab + save('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos'); +#+end_src + +* Note about the solid body assumption +If we measure the motion of a rigid body along a direction $\vec{x}$ using 2 sensors that are co-linear with the same direction $\vec{x}$ ($\vec{p}_2 = \vec{p}_1 + \alpha \vec{x}$), they will measured the same quantity. + +This is illustrated on figure [[fig:aligned_accelerometers]]. + +#+begin_src latex :file aligned_accelerometers.pdf :post pdf2svg(file=*this*, ext="png") :exports results + \newcommand\irregularcircle[2]{% radius, irregularity + \pgfextra {\pgfmathsetmacro\len{(#1)+rand*(#2)}} + +(0:\len pt) + \foreach \a in {10,20,...,350}{ + \pgfextra {\pgfmathsetmacro\len{(#1)+rand*(#2)}} + -- +(\a:\len pt) + } -- cycle + } + \begin{tikzpicture} + \draw[rounded corners=1mm, fill=blue!30!white] (0, 0) \irregularcircle{3cm}{1mm}; + + \node[] (origin) at (4, -1) {$\bullet$}; + \begin{scope}[shift={(origin)}] + \def\axissize{0.8cm} + \draw[->] (0, 0) -- ++(\axissize, 0) node[above left]{$x$}; + \draw[->] (0, 0) -- ++(0, \axissize) node[below right]{$y$}; + \draw[fill, color=black] (0, 0) circle (0.05*\axissize); + \node[draw, circle, inner sep=0pt, minimum size=0.4*\axissize, label=left:$z$] (yaxis) at (0, 0){}; + \node[below right] at (0, 0){$\{O\}$}; + \end{scope} + + \coordinate[] (p1) at (-1.5, 1.5); + \coordinate[] (p2) at ( 1.5, 1.5); + + \draw[->] (p1)node[]{$\bullet$}node[above]{$p_1$} -- ++(1, 0)node[above]{$v_{x1}$}; + \draw[->] (p2)node[]{$\bullet$}node[above]{$p_2$} -- ++(1, 0)node[above]{$v_{x2}$}; + + \draw[dashed] ($(p1)+(-1, 0)$) -- ($(p2)+(2, 0)$); + \end{tikzpicture} +#+end_src + +#+name: fig:aligned_accelerometers +#+caption: Aligned measurement of the motion of a solid body +#+RESULTS: +[[file:figs/aligned_accelerometers.png]] + +The motion of the rigid body of figure [[fig:aligned_accelerometers]] is defined by the velocity $\vec{v}$ and rotation $\vec{\Omega}$ with respect to the reference frame $\{O\}$. + +The motions at points $1$ and $2$ are: +\begin{align*} + v_1 &= v + \Omega \times p_1 \\ + v_2 &= v + \Omega \times p_2 +\end{align*} + +Taking only the $x$ direction: +\begin{align*} + v_{x1} &= v + \Omega_y p_{z1} - \Omega_z p_{y1} \\ + v_{x2} &= v + \Omega_y p_{z2} - \Omega_z p_{y2} +\end{align*} + +However, we have $p_{1y} = p_{2y}$ and $p_{1z} = p_{2z}$ because of the co-linearity of the two sensors in the $x$ direction, and thus we obtain +\begin{equation} + v_{x1} = v_{x2} +\end{equation} + +#+begin_important + Two sensors that are measuring the motion of a rigid body in the direction of the line linking the two sensors should measure the same quantity. +#+end_important + +We can verify that the rigid body assumption is correct by comparing the measurement of the sensors. + +From the table [[tab:position_accelerometers]], we can guess which sensors will give the same results in the X and Y directions. + +Comparison of such measurements in the X direction is shown on figure [[fig:compare_acc_x_dir]] and in the Y direction on figure [[fig:compare_acc_y_dir]]. + +#+begin_src matlab :exports none + meas_dir = 1; + exc_dir = 1; + + acc_i = [1 , 4 ; + 2 , 3 ; + 5 , 8 ; + 6 , 7 ; + 9 , 12; + 10, 11; + 14, 15; + 18, 19; + 21, 23]; + + figure; + for i = 1:size(acc_i, 1) + subaxis(3, 3, i); + hold on; + plot(freqs, abs(squeeze(FRFs(meas_dir+3*(acc_i(i, 1)-1), exc_dir, :)))) + plot(freqs, abs(squeeze(FRFs(meas_dir+3*(acc_i(i, 2)-1), exc_dir, :)))) + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + if i > 6 + xlabel('Frequency [Hz]'); + else + set(gca, 'XTickLabel',[]); + end + + if rem(i, 3) == 1 + ylabel('Amplitude'); + end + xlim([1, 200]); + title(sprintf('Acc %i and %i - X', acc_i(i, 1), acc_i(i, 2))); + end +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/compare_acc_x_dir.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:compare_acc_x_dir +#+CAPTION: Compare accelerometers align in the X direction +[[file:figs/compare_acc_x_dir.png]] + + +#+begin_src matlab :exports none + meas_dir = 2; + exc_dir = 1; + + acc_i = [1, 2; + 5, 6; + 7, 8; + 9, 10; + 11, 12; + 13, 14; + 15, 16; + 17, 18; + 19, 20]; + + figure; + for i = 1:size(acc_i, 1) + subaxis(3, 3, i); + hold on; + plot(freqs, abs(squeeze(FRFs(meas_dir+3*(acc_i(i, 1)-1), exc_dir, :)))) + plot(freqs, abs(squeeze(FRFs(meas_dir+3*(acc_i(i, 2)-1), exc_dir, :)))) + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + if i > 6 + xlabel('Frequency [Hz]'); + else + set(gca, 'XTickLabel',[]); + end + + if rem(i, 3) == 1 + ylabel('Amplitude'); + end + xlim([1, 200]); + title(sprintf('Acc %i and %i - Y', acc_i(i, 1), acc_i(i, 2))); + end +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/compare_acc_y_dir.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:compare_acc_y_dir +#+CAPTION: Compare accelerometers align in the Y direction +[[file:figs/compare_acc_y_dir.png]] + +#+begin_important + From the two figures above, we are more confident about the rigid body assumption in the frequency band of interest. +#+end_important diff --git a/modal-analysis/modal_extraction.org b/modal-analysis/modal_extraction.org index 6071586..b993451 100644 --- a/modal-analysis/modal_extraction.org +++ b/modal-analysis/modal_extraction.org @@ -48,28 +48,10 @@ <> #+end_src - - -* TODO After that, this should be in the modal extraction -* TODO Part to explain how to choose the modes -* Obtained Mode Shapes animations -One all the FRFs are obtained, we can estimate the modal parameters (resonance frequencies, modal shapes and modal damping) within the modal software. - -For that, multiple modal extraction techniques can be used (SIMO, MIMO, narrow band, wide band, ...). - -Then, it is possible to show the modal shapes with an animation. - -Examples are shown on figures [[fig:mode1]] and [[fig:mode6]]. - -Animations of all the other modes are accessible using the following links: [[file:img/modes/mode1.gif][mode 1]], [[file:img/modes/mode2.gif][mode 2]], [[file:img/modes/mode3.gif][mode 3]], [[file:img/modes/mode4.gif][mode 4]], [[file:img/modes/mode5.gif][mode 5]], [[file:img/modes/mode6.gif][mode 6]], [[file:img/modes/mode7.gif][mode 7]], [[file:img/modes/mode8.gif][mode 8]], [[file:img/modes/mode9.gif][mode 9]], [[file:img/modes/mode10.gif][mode 10]], [[file:img/modes/mode11.gif][mode 11]], [[file:img/modes/mode12.gif][mode 12]], [[file:img/modes/mode13.gif][mode 13]], [[file:img/modes/mode14.gif][mode 14]], [[file:img/modes/mode15.gif][mode 15]], [[file:img/modes/mode16.gif][mode 16]], [[file:img/modes/mode17.gif][mode 17]], [[file:img/modes/mode18.gif][mode 18]], [[file:img/modes/mode19.gif][mode 19]], [[file:img/modes/mode20.gif][mode 20]], [[file:img/modes/mode21.gif][mode 21]]. - -#+name: fig:mode1 -#+caption: Mode 1 -[[file:img/modes/mode1.gif]] - -#+name: fig:mode6 -#+caption: Mode 6 -[[file:img/modes/mode6.gif]] +* TODO Part to explain how to choose the modes frequencies +- bro-band method used +- Stabilization Chart +- 21 modes * Obtained Modal Parameters From the modal analysis software, we can export the obtained modal parameters: @@ -212,6 +194,25 @@ The obtained mode frequencies and damping are shown below. | 150.1 | 2.2 | | 164.7 | 1.4 | +* Obtained Mode Shapes animations +One all the FRFs are obtained, we can estimate the modal parameters (resonance frequencies, modal shapes and modal damping) within the modal software. + +For that, multiple modal extraction techniques can be used (SIMO, MIMO, narrow band, wide band, ...). + +Then, it is possible to show the modal shapes with an animation. + +Examples are shown on figures [[fig:mode1]] and [[fig:mode6]]. + +Animations of all the other modes are accessible using the following links: [[file:img/modes/mode1.gif][mode 1]], [[file:img/modes/mode2.gif][mode 2]], [[file:img/modes/mode3.gif][mode 3]], [[file:img/modes/mode4.gif][mode 4]], [[file:img/modes/mode5.gif][mode 5]], [[file:img/modes/mode6.gif][mode 6]], [[file:img/modes/mode7.gif][mode 7]], [[file:img/modes/mode8.gif][mode 8]], [[file:img/modes/mode9.gif][mode 9]], [[file:img/modes/mode10.gif][mode 10]], [[file:img/modes/mode11.gif][mode 11]], [[file:img/modes/mode12.gif][mode 12]], [[file:img/modes/mode13.gif][mode 13]], [[file:img/modes/mode14.gif][mode 14]], [[file:img/modes/mode15.gif][mode 15]], [[file:img/modes/mode16.gif][mode 16]], [[file:img/modes/mode17.gif][mode 17]], [[file:img/modes/mode18.gif][mode 18]], [[file:img/modes/mode19.gif][mode 19]], [[file:img/modes/mode20.gif][mode 20]], [[file:img/modes/mode21.gif][mode 21]]. + +#+name: fig:mode1 +#+caption: Mode 1 +[[file:img/modes/mode1.gif]] + +#+name: fig:mode6 +#+caption: Mode 6 +[[file:img/modes/mode6.gif]] + * Compute the Modal Model ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -1201,7 +1202,6 @@ This could be due to the 4 Airloc Levelers that are used for the granite (figure They are probably *not well leveled*, so the granite is supported only by two Airloc. - * Setup #+name: fig:nass-modal-test #+caption: Position and orientation of the accelerometer used @@ -1356,7 +1356,7 @@ We create a structure =solids= that contains the accelerometer number of each so solid_names = fields(solids); #+end_src -* From local coordinates to global coordinates +* From local coordinates to global coordinates for the mode shapes #+begin_src latex :file local_to_global_coordinates.pdf :post pdf2svg(file=*this*, ext="png") :exports results \newcommand\irregularcircle[2]{% radius, irregularity \pgfextra {\pgfmathsetmacro\len{(#1)+rand*(#2)}} @@ -1791,21 +1791,7 @@ FRF matrix $n \times p$: xlim([1, 200]); #+end_src - -#+begin_src matlab - figure; - hold on; - for i = 1:3*n_acc - plot(freqs, squeeze(COHs(i, 1, :)), 'color', [0, 0, 0, 0.2]); - end - hold off; - xlabel('Frequency [Hz]'); - ylabel('Coherence [\%]'); -#+end_src - - -Composite Response Function. - +* Composite Response Function We here sum the norm instead of the complex numbers. #+begin_src matlab @@ -1833,6 +1819,30 @@ We here sum the norm instead of the complex numbers. xlim([1, 200]); #+end_src +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/composite_response_function.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:composite_response_function +#+CAPTION: Composite Response Function +[[file:figs/composite_response_function.png]] + + +* TODO Singular Value Decomposition - Modal Indication Function +Show the same plot as in the modal software. +This helps to identify double modes. + +From the documentation of the modal software: +#+begin_quote +The MIF consist of the singular values of the Frequency response function matrix. +The number of MIFs equals the number of excitations. +By the powerful singular value decomposition, the real signal space is separated from the noise space. +Therefore, the MIFs exhibit the modes effectively. +A peak in the MIFs plot usually indicate the existence of a structural mode, and two peaks at the same frequency point means the existence of two repeated modes. +Moreover, the magnitude of the MIFs implies the strength of the a mode. +#+end_quote + * From local coordinates to global coordinates with the FRFs #+begin_src matlab % Number of Solids * DOF for each solid / Number of excitation / frequency points
Table 3: Impact test parameters