diff --git a/disturbance-control-system/figs/psd_marble_comp.png b/disturbance-control-system/figs/psd_marble_comp.png index 3777660..ae7dba1 100644 Binary files a/disturbance-control-system/figs/psd_marble_comp.png and b/disturbance-control-system/figs/psd_marble_comp.png differ diff --git a/disturbance-control-system/figs/psd_marble_comp_high_freq.png b/disturbance-control-system/figs/psd_marble_comp_high_freq.png index f7817cb..79d0c6b 100644 Binary files a/disturbance-control-system/figs/psd_marble_comp_high_freq.png and b/disturbance-control-system/figs/psd_marble_comp_high_freq.png differ diff --git a/disturbance-control-system/figs/psd_sample_comp.png b/disturbance-control-system/figs/psd_sample_comp.png index 709675b..97ca8ea 100644 Binary files a/disturbance-control-system/figs/psd_sample_comp.png and b/disturbance-control-system/figs/psd_sample_comp.png differ diff --git a/disturbance-control-system/figs/psd_sample_comp_high_freq.png b/disturbance-control-system/figs/psd_sample_comp_high_freq.png index e8c4c13..fd4fdd7 100644 Binary files a/disturbance-control-system/figs/psd_sample_comp_high_freq.png and b/disturbance-control-system/figs/psd_sample_comp_high_freq.png differ diff --git a/disturbance-control-system/figs/time_domain_marble.png b/disturbance-control-system/figs/time_domain_marble.png index b4a3365..755760b 100644 Binary files a/disturbance-control-system/figs/time_domain_marble.png and b/disturbance-control-system/figs/time_domain_marble.png differ diff --git a/disturbance-control-system/figs/time_domain_sample.png b/disturbance-control-system/figs/time_domain_sample.png index 0b37d5d..6518c28 100644 Binary files a/disturbance-control-system/figs/time_domain_sample.png and b/disturbance-control-system/figs/time_domain_sample.png differ diff --git a/disturbance-control-system/index.html b/disturbance-control-system/index.html index bb97287..15dac75 100644 --- a/disturbance-control-system/index.html +++ b/disturbance-control-system/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Effect on the control system of each stages on the vibration of the station @@ -258,67 +258,78 @@ for the JavaScript code in this tag.

Table of Contents

+

-For all the measurements shown here: +This file is organized as follow:

-
-

1 Effect of all the control systems on the Sample vibrations

+
+

1 Effect of all the control systems on the Sample vibrations

- +

@@ -328,17 +339,26 @@ All the files (data and Matlab scripts) are accessible -

1.1 Experimental Setup

+
+

1.1 Experimental Setup

-We here measure the signals of two geophones: +We here measure the signals of two L22 geophones:

  • One is located on top of the Sample platform
  • One is located on the marble
+

+The signals are amplified with voltage amplifiers with the following settings: +

+
    +
  • gain of 60dB
  • +
  • AC/DC option set on AC
  • +
  • Low pass filter set at 1kHz
  • +
+

The signal from the top geophone does not go trought the slip-ring.

@@ -348,7 +368,7 @@ First, all the control systems are turned ON, then, they are turned one by one. Each measurement are done during 50s.

- +
@@ -468,8 +488,8 @@ Each of the mat file contains one array data with 3 co -
-

1.2 Load data

+
+

1.2 Load data

We load the data of the z axis of two geophones. @@ -486,26 +506,26 @@ d8 = load( -

1.3 Analysis - Time Domain

+
+

1.3 Analysis - Time Domain

First, we can look at the time domain data and compare all the measurements:

    -
  • comparison for the geophone at the sample location (figure 1)
  • -
  • comparison for the geophone on the granite (figure 2)
  • +
  • comparison for the geophone at the sample location (figure 1)
  • +
  • comparison for the geophone on the granite (figure 2)
figure;
 hold on;
-plot(d3(:, 3), d3(:, 2), 'DisplayName', 'All ON');
-plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Ty OFF');
-plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Ry OFF');
-plot(d6(:, 3), d6(:, 2), 'DisplayName', 'S-R OFF');
-plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Rz OFF');
-plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Hexa OFF');
+plot(d3(:, 3), d3(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Hexa, Rz, SR');
+plot(d6(:, 3), d6(:, 2), 'DisplayName', 'Hexa, Rz');
+plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Hexa');
+plot(d8(:, 3), d8(:, 2), 'DisplayName', 'All OFF');
 hold off;
 xlabel('Time [s]'); ylabel('Voltage [V]');
 xlim([0, 50]);
@@ -514,22 +534,21 @@ legend(
+

time_domain_sample.png

Figure 1: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location

-
figure;
 hold on;
-plot(d3(:, 3), d3(:, 1), 'DisplayName', 'All ON');
-plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Ty OFF');
-plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Ry OFF');
-plot(d6(:, 3), d6(:, 1), 'DisplayName', 'S-R OFF');
-plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Rz OFF');
-plot(d8(:, 3), d8(:, 1), 'DisplayName', 'Hexa OFF');
+plot(d3(:, 3), d3(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Hexa, Rz, SR');
+plot(d6(:, 3), d6(:, 1), 'DisplayName', 'Hexa, Rz');
+plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Hexa');
+plot(d8(:, 3), d8(:, 1), 'DisplayName', 'All OFF');
 hold off;
 xlabel('Time [s]'); ylabel('Voltage [V]');
 xlim([0, 50]);
@@ -538,7 +557,7 @@ legend(
+

time_domain_marble.png

Figure 2: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble

@@ -546,8 +565,8 @@ legend( -

1.4 Analysis - Frequency Domain

+
+

1.4 Analysis - Frequency Domain

dt = d3(2, 3) - d3(1, 3);
@@ -558,8 +577,8 @@ win = hanning(ceil
 
-
-

1.4.1 Vibrations at the sample location

+
+

1.4.1 Vibrations at the sample location

First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. @@ -575,17 +594,18 @@ First, we compute the Power Spectral Density of the signals coming from the Geop

-And we compare all the signals (figures 3 and 4). +And we compare all the signals (figures 3 and 4).

figure;
 hold on;
-plot(f, sqrt(px3), 'DisplayName', 'All ON');
-plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
-plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
-plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
-plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
-plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
+plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
+plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
+plot(f, sqrt(px7), 'DisplayName', 'Hexa');
+plot(f, sqrt(px8), 'DisplayName', 'All OFF');
+plot(fgm, sqrt(pxxgm), '-k', 'DisplayName', 'Ground Velocity');
 hold off;
 set(gca, 'xscale', 'log');
 set(gca, 'yscale', 'log');
@@ -596,7 +616,7 @@ legend(
+

psd_sample_comp.png

Figure 3: Amplitude Spectral Density of the signal coming from the top geophone

@@ -604,7 +624,7 @@ legend( +

psd_sample_comp_high_freq.png

Figure 4: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)

@@ -612,8 +632,8 @@ legend( -

1.4.2 Vibrations on the marble

+
+

1.4.2 Vibrations on the marble

Now we plot the same curves for the geophone located on the marble. @@ -629,17 +649,18 @@ Now we plot the same curves for the geophone located on the marble.

-And we compare the Amplitude Spectral Densities (figures 5 and 6) +And we compare the Amplitude Spectral Densities (figures 5 and 6)

figure;
 hold on;
-plot(f, sqrt(px3), 'DisplayName', 'All ON');
-plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
-plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
-plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
-plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
-plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
+plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
+plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
+plot(f, sqrt(px7), 'DisplayName', 'Hexa');
+plot(f, sqrt(px8), 'DisplayName', 'All OFF');
+plot(fgm, sqrt(pxxgm), '-k', 'DisplayName', 'Ground Velocity');
 hold off;
 set(gca, 'xscale', 'log');
 set(gca, 'yscale', 'log');
@@ -650,7 +671,7 @@ legend(
+

psd_marble_comp.png

Figure 5: Amplitude Spectral Density of the signal coming from the top geophone

@@ -658,7 +679,7 @@ legend( +

psd_marble_comp_high_freq.png

Figure 6: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)

@@ -666,102 +687,25 @@ legend( -

1.5 Effect of the control system on the transmissibility from ground to sample

+ +
+

1.5 Conclusion

-

-As the feedback loops change the dynamics of the system, we should see differences on the transfer function from marble velocity to sample velocity when turning off the control systems (figure 7). -

- -
-
dt = d3(2, 3) - d3(1, 3);
-
-Fs = 1/dt;
-win = hanning(ceil(1*Fs));
-
-
- -

-First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. -

-
-
[T3, f] = tfestimate(d3(:, 1), d3(:, 2), win, [], [], Fs);
-[T4, ~] = tfestimate(d4(:, 1), d4(:, 2), win, [], [], Fs);
-[T5, ~] = tfestimate(d5(:, 1), d5(:, 2), win, [], [], Fs);
-[T6, ~] = tfestimate(d6(:, 1), d6(:, 2), win, [], [], Fs);
-[T7, ~] = tfestimate(d7(:, 1), d7(:, 2), win, [], [], Fs);
-[T8, ~] = tfestimate(d8(:, 1), d8(:, 2), win, [], [], Fs);
-
-
- -
-
figure;
-ax1 = subplot(2, 1, 1);
-hold on;
-plot(f, abs(T3), 'DisplayName', 'All ON');
-plot(f, abs(T4), 'DisplayName', 'Ty OFF');
-plot(f, abs(T5), 'DisplayName', 'Ry OFF');
-plot(f, abs(T6), 'DisplayName', 'S-R OFF');
-plot(f, abs(T7), 'DisplayName', 'Rz OFF');
-plot(f, abs(T8), 'DisplayName', 'Hexa OFF');
-hold off;
-set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
-set(gca, 'XTickLabel',[]);
-ylabel('Magnitude');
-legend('Location', 'northwest');
-
-ax2 = subplot(2, 1, 2);
-hold on;
-plot(f, mod(180+180/pi*phase(T3), 360)-180);
-plot(f, mod(180+180/pi*phase(T4), 360)-180);
-plot(f, mod(180+180/pi*phase(T5), 360)-180);
-plot(f, mod(180+180/pi*phase(T6), 360)-180);
-plot(f, mod(180+180/pi*phase(T7), 360)-180);
-plot(f, mod(180+180/pi*phase(T8), 360)-180);
-hold off;
-set(gca, 'xscale', 'log');
-ylim([-180, 180]);
-yticks([-180, -90, 0, 90, 180]);
-xlabel('Frequency [Hz]'); ylabel('Phase');
-
-linkaxes([ax1,ax2],'x');
-xlim([1, 500]);
-
-
- - -
-

trans_comp.png -

-

Figure 7: Comparison of the transfer function from the geophone on the marble to the geophone at the sample location

-
-
-
-
-

1.6 Conclusion

-
  • The control system of the Ty stage induces a lot of vibrations of the marble
-
- -
-
    -
  • Why it seems that the measurement noise at high frequency is the limiting factor when the slip ring is ON but not when it is OFF?
  • -
-
-
-

2 Effect of all the control systems on the Sample vibrations - One stage at a time

+
+

2 Effect of all the control systems on the Sample vibrations - One stage at a time

- +

@@ -771,8 +715,8 @@ All the files (data and Matlab scripts) are accessible -

2.1 Experimental Setup

+
Table 1: Summary of the measurements and the states of the control systems
+
@@ -926,16 +870,16 @@ Each of the mat file contains one array data with 3 co
Table 2: Summary of the measurements and the states of the control systems
-
+

IMG_20190507_101459.jpg

-

Figure 8: Voltage amplifier settings for the measurement

+

Figure 7: Voltage amplifier settings for the measurement

-
-

2.2 Load data

+
+

2.2 Load data

We load the data of the z axis of two geophones. @@ -952,8 +896,8 @@ d_he = load( -

2.3 Voltage to Velocity

+
-
-

2.4 Analysis - Time Domain

+
+

2.4 Analysis - Time Domain

First, we can look at the time domain data and compare all the measurements:

    -
  • comparison for the geophone at the sample location (figure 9)
  • -
  • comparison for the geophone on the granite (figure 10)
  • -
  • relative displacement of the sample with respect to the marble (figure 10)
  • +
  • comparison for the geophone at the sample location (figure 8)
  • +
  • comparison for the geophone on the granite (figure 9)
  • +
  • relative displacement of the sample with respect to the marble (figure 9)
@@ -1009,10 +953,10 @@ legend( +

time_domain_sample_lpf.png

-

Figure 9: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location

+

Figure 8: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location

@@ -1033,10 +977,10 @@ legend( +

time_domain_marble_lpf.png

-

Figure 10: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble

+

Figure 9: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble

@@ -1056,16 +1000,16 @@ legend( +

time_domain_relative_disp.png

-

Figure 11: Relative displacement of the sample with respect to the marble

+

Figure 10: Relative displacement of the sample with respect to the marble

-
-

2.5 Analysis - Frequency Domain

+
+

2.5 Analysis - Frequency Domain

dt = d_of(2, 3) - d_of(1, 3);
@@ -1076,8 +1020,8 @@ win = hanning(ceil
 
-
-

2.5.1 Vibrations at the sample location

+
+

2.5.1 Vibrations at the sample location

First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location. @@ -1093,7 +1037,7 @@ First, we compute the Power Spectral Density of the signals coming from the Geop

-And we compare all the signals (figures 12 and 13). +And we compare all the signals (figures 11 and 12).

figure;
@@ -1114,24 +1058,24 @@ legend(
+

psd_sample_comp_lpf.png

-

Figure 12: Amplitude Spectral Density of the sample velocity

+

Figure 11: Amplitude Spectral Density of the sample velocity

-
+

psd_sample_comp_high_freq_lpf.png

-

Figure 13: Amplitude Spectral Density of the sample velocity (zoom at high frequencies)

+

Figure 12: Amplitude Spectral Density of the sample velocity (zoom at high frequencies)

-
-

2.5.2 Vibrations on the marble

+
+

2.5.2 Vibrations on the marble

Now we plot the same curves for the geophone located on the marble. @@ -1147,7 +1091,7 @@ Now we plot the same curves for the geophone located on the marble.

-And we compare the Amplitude Spectral Densities (figures 14 and 15) +And we compare the Amplitude Spectral Densities (figures 13 and 14)

figure;
@@ -1168,25 +1112,25 @@ legend(
+

psd_marble_comp_lpf.png

-

Figure 14: Amplitude Spectral Density of the marble velocity

+

Figure 13: Amplitude Spectral Density of the marble velocity

-
+

psd_marble_comp_lpf_high_freq.png

-

Figure 15: Amplitude Spectral Density of the marble velocity (zoom at high frequencies)

+

Figure 14: Amplitude Spectral Density of the marble velocity (zoom at high frequencies)

-
-

2.6 Conclusion

+
+

2.6 Conclusion