diff --git a/disturbance-control-system/figs/psd_marble_comp.png b/disturbance-control-system/figs/psd_marble_comp.png index 3777660..ae7dba1 100644 Binary files a/disturbance-control-system/figs/psd_marble_comp.png and b/disturbance-control-system/figs/psd_marble_comp.png differ diff --git a/disturbance-control-system/figs/psd_marble_comp_high_freq.png b/disturbance-control-system/figs/psd_marble_comp_high_freq.png index f7817cb..79d0c6b 100644 Binary files a/disturbance-control-system/figs/psd_marble_comp_high_freq.png and b/disturbance-control-system/figs/psd_marble_comp_high_freq.png differ diff --git a/disturbance-control-system/figs/psd_sample_comp.png b/disturbance-control-system/figs/psd_sample_comp.png index 709675b..97ca8ea 100644 Binary files a/disturbance-control-system/figs/psd_sample_comp.png and b/disturbance-control-system/figs/psd_sample_comp.png differ diff --git a/disturbance-control-system/figs/psd_sample_comp_high_freq.png b/disturbance-control-system/figs/psd_sample_comp_high_freq.png index e8c4c13..fd4fdd7 100644 Binary files a/disturbance-control-system/figs/psd_sample_comp_high_freq.png and b/disturbance-control-system/figs/psd_sample_comp_high_freq.png differ diff --git a/disturbance-control-system/figs/time_domain_marble.png b/disturbance-control-system/figs/time_domain_marble.png index b4a3365..755760b 100644 Binary files a/disturbance-control-system/figs/time_domain_marble.png and b/disturbance-control-system/figs/time_domain_marble.png differ diff --git a/disturbance-control-system/figs/time_domain_sample.png b/disturbance-control-system/figs/time_domain_sample.png index 0b37d5d..6518c28 100644 Binary files a/disturbance-control-system/figs/time_domain_sample.png and b/disturbance-control-system/figs/time_domain_sample.png differ diff --git a/disturbance-control-system/index.html b/disturbance-control-system/index.html index bb97287..15dac75 100644 --- a/disturbance-control-system/index.html +++ b/disturbance-control-system/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +-For all the measurements shown here: +This file is organized as follow:
@@ -328,17 +339,26 @@ All the files (data and Matlab scripts) are accessible
-
-We here measure the signals of two geophones:
+We here measure the signals of two L22 geophones:
+The signals are amplified with voltage amplifiers with the following settings:
+
The signal from the top geophone does not go trought the slip-ring.
We load the data of the z axis of two geophones.
@@ -486,26 +506,26 @@ d8 = load(
-
First, we can look at the time domain data and compare all the measurements:
Figure 1: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location Figure 2: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble
First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
@@ -575,17 +594,18 @@ First, we compute the Power Spectral Density of the signals coming from the Geop
-And we compare all the signals (figures 3 and 4).
+And we compare all the signals (figures 3 and 4).
Figure 3: Amplitude Spectral Density of the signal coming from the top geophone Figure 4: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)
Now we plot the same curves for the geophone located on the marble.
@@ -629,17 +649,18 @@ Now we plot the same curves for the geophone located on the marble.
-And we compare the Amplitude Spectral Densities (figures 5 and 6)
+And we compare the Amplitude Spectral Densities (figures 5 and 6)
Figure 5: Amplitude Spectral Density of the signal coming from the top geophone Figure 6: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)
-As the feedback loops change the dynamics of the system, we should see differences on the transfer function from marble velocity to sample velocity when turning off the control systems (figure 7).
-
-First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
- Figure 7: Comparison of the transfer function from the geophone on the marble to the geophone at the sample location
@@ -771,8 +715,8 @@ All the files (data and Matlab scripts) are accessible
-
We here measure the signals of two geophones:
@@ -795,7 +739,7 @@ Each measurement are done during 100s.
-The settings of the voltage amplifier are shown on figure 8:
+The settings of the voltage amplifier are shown on figure 7:
Figure 8: Voltage amplifier settings for the measurement Figure 7: Voltage amplifier settings for the measurement
We load the data of the z axis of two geophones.
@@ -952,8 +896,8 @@ d_he = load(
-
We convert the measured voltage to velocity using the function
First, we can look at the time domain data and compare all the measurements:
Figure 9: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location Figure 8: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location Figure 10: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble Figure 9: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble Figure 11: Relative displacement of the sample with respect to the marble Figure 10: Relative displacement of the sample with respect to the marble
First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
@@ -1093,7 +1037,7 @@ First, we compute the Power Spectral Density of the signals coming from the Geop
-And we compare all the signals (figures 12 and 13).
+And we compare all the signals (figures 11 and 12).
Figure 12: Amplitude Spectral Density of the sample velocity Figure 11: Amplitude Spectral Density of the sample velocity Figure 13: Amplitude Spectral Density of the sample velocity (zoom at high frequencies) Figure 12: Amplitude Spectral Density of the sample velocity (zoom at high frequencies)
Now we plot the same curves for the geophone located on the marble.
@@ -1147,7 +1091,7 @@ Now we plot the same curves for the geophone located on the marble.
-And we compare the Amplitude Spectral Densities (figures 14 and 15)
+And we compare the Amplitude Spectral Densities (figures 13 and 14)
Figure 14: Amplitude Spectral Density of the marble velocity Figure 13: Amplitude Spectral Density of the marble velocity Figure 15: Amplitude Spectral Density of the marble velocity (zoom at high frequencies) Figure 14: Amplitude Spectral Density of the marble velocity (zoom at high frequencies)1.1 Experimental Setup
+1.1 Experimental Setup
+
+
+
+
mat file contains one array data with 3 co
-1.2 Load data
+1.2 Load data
1.3 Analysis - Time Domain
+1.3 Analysis - Time Domain
-
figure;
hold on;
-plot(d3(:, 3), d3(:, 2), 'DisplayName', 'All ON');
-plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Ty OFF');
-plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Ry OFF');
-plot(d6(:, 3), d6(:, 2), 'DisplayName', 'S-R OFF');
-plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Rz OFF');
-plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Hexa OFF');
+plot(d3(:, 3), d3(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Hexa, Rz, SR');
+plot(d6(:, 3), d6(:, 2), 'DisplayName', 'Hexa, Rz');
+plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Hexa');
+plot(d8(:, 3), d8(:, 2), 'DisplayName', 'All OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
@@ -514,22 +534,21 @@ legend(
+
figure;
hold on;
-plot(d3(:, 3), d3(:, 1), 'DisplayName', 'All ON');
-plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Ty OFF');
-plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Ry OFF');
-plot(d6(:, 3), d6(:, 1), 'DisplayName', 'S-R OFF');
-plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Rz OFF');
-plot(d8(:, 3), d8(:, 1), 'DisplayName', 'Hexa OFF');
+plot(d3(:, 3), d3(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Hexa, Rz, SR');
+plot(d6(:, 3), d6(:, 1), 'DisplayName', 'Hexa, Rz');
+plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Hexa');
+plot(d8(:, 3), d8(:, 1), 'DisplayName', 'All OFF');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0, 50]);
@@ -538,7 +557,7 @@ legend(
+
1.4 Analysis - Frequency Domain
+1.4 Analysis - Frequency Domain
dt = d3(2, 3) - d3(1, 3);
@@ -558,8 +577,8 @@ win = hanning(ceil
1.4.1 Vibrations at the sample location
+1.4.1 Vibrations at the sample location
figure;
hold on;
-plot(f, sqrt(px3), 'DisplayName', 'All ON');
-plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
-plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
-plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
-plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
-plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
+plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
+plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
+plot(f, sqrt(px7), 'DisplayName', 'Hexa');
+plot(f, sqrt(px8), 'DisplayName', 'All OFF');
+plot(fgm, sqrt(pxxgm), '-k', 'DisplayName', 'Ground Velocity');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
@@ -596,7 +616,7 @@ legend(
+
1.4.2 Vibrations on the marble
+1.4.2 Vibrations on the marble
figure;
hold on;
-plot(f, sqrt(px3), 'DisplayName', 'All ON');
-plot(f, sqrt(px4), 'DisplayName', 'Ty OFF');
-plot(f, sqrt(px5), 'DisplayName', 'Ry OFF');
-plot(f, sqrt(px6), 'DisplayName', 'S-R OFF');
-plot(f, sqrt(px7), 'DisplayName', 'Rz OFF');
-plot(f, sqrt(px8), 'DisplayName', 'Hexa OFF');
+plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
+plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
+plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
+plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
+plot(f, sqrt(px7), 'DisplayName', 'Hexa');
+plot(f, sqrt(px8), 'DisplayName', 'All OFF');
+plot(fgm, sqrt(pxxgm), '-k', 'DisplayName', 'Ground Velocity');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
@@ -650,7 +671,7 @@ legend(
+
1.5 Effect of the control system on the transmissibility from ground to sample
+
+1.5 Conclusion
dt = d3(2, 3) - d3(1, 3);
-
-Fs = 1/dt;
-win = hanning(ceil(1*Fs));
-
-[T3, f] = tfestimate(d3(:, 1), d3(:, 2), win, [], [], Fs);
-[T4, ~] = tfestimate(d4(:, 1), d4(:, 2), win, [], [], Fs);
-[T5, ~] = tfestimate(d5(:, 1), d5(:, 2), win, [], [], Fs);
-[T6, ~] = tfestimate(d6(:, 1), d6(:, 2), win, [], [], Fs);
-[T7, ~] = tfestimate(d7(:, 1), d7(:, 2), win, [], [], Fs);
-[T8, ~] = tfestimate(d8(:, 1), d8(:, 2), win, [], [], Fs);
-
-figure;
-ax1 = subplot(2, 1, 1);
-hold on;
-plot(f, abs(T3), 'DisplayName', 'All ON');
-plot(f, abs(T4), 'DisplayName', 'Ty OFF');
-plot(f, abs(T5), 'DisplayName', 'Ry OFF');
-plot(f, abs(T6), 'DisplayName', 'S-R OFF');
-plot(f, abs(T7), 'DisplayName', 'Rz OFF');
-plot(f, abs(T8), 'DisplayName', 'Hexa OFF');
-hold off;
-set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
-set(gca, 'XTickLabel',[]);
-ylabel('Magnitude');
-legend('Location', 'northwest');
-
-ax2 = subplot(2, 1, 2);
-hold on;
-plot(f, mod(180+180/pi*phase(T3), 360)-180);
-plot(f, mod(180+180/pi*phase(T4), 360)-180);
-plot(f, mod(180+180/pi*phase(T5), 360)-180);
-plot(f, mod(180+180/pi*phase(T6), 360)-180);
-plot(f, mod(180+180/pi*phase(T7), 360)-180);
-plot(f, mod(180+180/pi*phase(T8), 360)-180);
-hold off;
-set(gca, 'xscale', 'log');
-ylim([-180, 180]);
-yticks([-180, -90, 0, 90, 180]);
-xlabel('Frequency [Hz]'); ylabel('Phase');
-
-linkaxes([ax1,ax2],'x');
-xlim([1, 500]);
-
-
-1.6 Conclusion
-
-
-
-
2 Effect of all the control systems on the Sample vibrations - One stage at a time
+2 Effect of all the control systems on the Sample vibrations - One stage at a time
2.1 Experimental Setup
+2.1 Experimental Setup
+
-mat file contains one array data with 3 co
2.2 Load data
+2.2 Load data
2.3 Voltage to Velocity
+2.3 Voltage to Velocity
voltageToVelocityL22 (accessible here).
@@ -980,16 +924,16 @@ d_he(
2.4 Analysis - Time Domain
+2.4 Analysis - Time Domain
-
2.5 Analysis - Frequency Domain
+2.5 Analysis - Frequency Domain
dt = d_of(2, 3) - d_of(1, 3);
@@ -1076,8 +1020,8 @@ win = hanning(ceil
2.5.1 Vibrations at the sample location
+2.5.1 Vibrations at the sample location
figure;
@@ -1114,24 +1058,24 @@ legend(
+
2.5.2 Vibrations on the marble
+2.5.2 Vibrations on the marble
figure;
@@ -1168,25 +1112,25 @@ legend(
+
2.6 Conclusion
+2.6 Conclusion
@@ -1199,11 +1143,11 @@ legend(
-
3 Effect of the Symetrie Driver
+3 Effect of the Symetrie Driver