diff --git a/huddle-test-geophones/figs/psd_velocity.png b/huddle-test-geophones/figs/psd_velocity.png index b27c091..4e862f6 100644 Binary files a/huddle-test-geophones/figs/psd_velocity.png and b/huddle-test-geophones/figs/psd_velocity.png differ diff --git a/huddle-test-geophones/figs/tf_geophones.png b/huddle-test-geophones/figs/tf_geophones.png new file mode 100644 index 0000000..eddee9d Binary files /dev/null and b/huddle-test-geophones/figs/tf_geophones.png differ diff --git a/huddle-test-geophones/index.html b/huddle-test-geophones/index.html index 444ad26..814c589 100644 --- a/huddle-test-geophones/index.html +++ b/huddle-test-geophones/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +Two L22 geophones are used. @@ -282,14 +283,14 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kH
-
Figure 1: Setup
Figure 2: Geophones
@@ -297,38 +298,38 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kHload('mat/data_001.mat', 't', 'x1', 'x2'); -dt = t(2) - t(1); +load('mat/data_001.mat', 't', 'x1', 'x2'); +dt = t(2) - t(1);
figure; +figure; hold on; -plot(t, x1); -plot(t, x2); +plot(t, x1); +plot(t, x2); hold off; -xlabel('Time [s]'); -ylabel('Voltage [V]'); -xlim([t(1), t(end)]); +xlabel('Time [s]'); +ylabel('Voltage [V]'); +xlim([t(1), t(end)]);
Figure 3: Time domain Data
@@ -336,19 +337,19 @@ xlim([figure; +figure; hold on; -plot(t, x1); -plot(t, x2); +plot(t, x1); +plot(t, x2); hold off; -xlabel('Time [s]'); -ylabel('Voltage [V]'); -xlim([0 1]); +xlabel('Time [s]'); +ylabel('Voltage [V]'); +xlim([0 1]);
Figure 4: Time domain Data - Zoom
@@ -356,39 +357,39 @@ xlim([[pxx1, f1] = pwelch(x1, hanning(ceil(length(t)/100)), 0, [], 1/dt); -[pxx2, f2] = pwelch(x2, hanning(ceil(length(t)/100)), 0, [], 1/dt); +[pxx1, f1] = pwelch(x1, hanning(ceil(1/dt)), 0, [], 1/dt); +[pxx2, f2] = pwelch(x2, hanning(ceil(1/dt)), 0, [], 1/dt);
The Geophone used are L22.
S0 = 88; % Sensitivity [V/(m/s)] -f0 = 2; % Cut-off frequnecy [Hz] -S = (s/2/pi/f0)/(1+s/2/pi/f0); +S0 = 88; % Sensitivity [V/(m/s)] +f0 = 2; % Cut-off frequnecy [Hz] +S = (s/2/pi/f0)/(1+s/2/pi/f0);
figure; -bodeFig({S}); -ylabel('Amplitude [V/(m/s)]') +figure; +bodeFig({S}); +ylabel('Amplitude [V/(m/s)]')
Figure 5: Sensibility of the Geophone
@@ -406,37 +407,74 @@ The cut-off frequency is set at 1kHz.G0 = 60; % [dB] +G0 = 60; % [dB] -G = G0/(1+s/2/pi/1000); +G = G0/(1+s/2/pi/1000);
figure; +figure; hold on; -plot(f1, sqrt(pxx1)./squeeze(abs(freqresp(G, f1, 'Hz')))./squeeze(abs(freqresp(S, f1, 'Hz')))); -plot(f2, sqrt(pxx2)./squeeze(abs(freqresp(G, f2, 'Hz')))./squeeze(abs(freqresp(S, f2, 'Hz')))); +plot(f1, sqrt(pxx1)./squeeze(abs(freqresp(G, f1, 'Hz')))./squeeze(abs(freqresp(S, f1, 'Hz')))); +plot(f2, sqrt(pxx2)./squeeze(abs(freqresp(G, f2, 'Hz')))./squeeze(abs(freqresp(S, f2, 'Hz')))); hold off; -set(gca, 'xscale', 'log'); -set(gca, 'yscale', 'log'); -xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]') +set(gca, 'xscale', 'log'); +set(gca, 'yscale', 'log'); +xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]') +xlim([2, 500]);
Figure 6: Spectral density of the velocity
[T12, f12] = tfestimate(x1, x2, hanning(1/dt), 0, [], 1/dt); ++
figure; +ax1 = subplot(2, 1, 1); +plot(f12, abs(T12)); +set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); + +ax2 = subplot(2, 1, 2); +plot(f12, mod(180+180/pi*phase(T12), 360)-180); +set(gca, 'xscale', 'log'); +ylim([-180, 180]); +yticks([-180, -90, 0, 90, 180]); +xlabel('Frequency [Hz]'); ylabel('Phase'); + +linkaxes([ax1,ax2],'x'); +xlim([2, 500]); ++
+
Figure 7: Estimated transfer function between the two geophones
+