%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for Simscape Model %% Linearization options opts = linearizeOptions; opts.SampleTime = 0; %% Open Simscape Model mdl = 'test_struts_simscape'; % Name of the Simulink File open(mdl); % Open Simscape Model %% Colors for the figures colors = colororder; %% Input/Output definition of the Model clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Interferometer %% Frequency vector [Hz] freqs = logspace(1, log10(2000), 1000); %% Load measured FRF for comparison load('meas_struts_frf.mat', 'f', 'enc_frf', 'int_frf', 'iff_frf', 'strut_nums'); %% Initialize strut with 2DoF model for the APA300ML and identify the dynamics n_hexapod = struct(); n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof'); n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof'); n_hexapod.actuator = initializeAPA('type', '2dof'); c_granite = 0; % Do not take into account damping added by the air bearing % Run the linearization Gs_2dof = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); Gs_2dof.InputName = {'u'}; Gs_2dof.OutputName = {'Vs', 'de', 'da'}; %% Initialize strut with "flexible" model for the APA300ML and identify the dynamics n_hexapod = struct(); n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof'); n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof'); n_hexapod.actuator = initializeAPA('type', 'flexible'); c_granite = 100; % Do not take into account damping added by the air bearing % Run the linearization Gs_flex = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); Gs_flex.InputName = {'u'}; Gs_flex.OutputName = {'Vs', 'de', 'da'}; %% Compare the FRF and identified dynamics from u to Vs and da figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1a = nexttile([2,1]); hold on; plot(f, abs(int_frf(:, 1)), 'color', [0,0,0,0.2], ... 'DisplayName', 'FRF'); for i = 2:length(strut_nums) plot(f, abs(int_frf(:, i)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(Gs_2dof('da', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(1,:), 'DisplayName', '2DoF Model') plot(freqs, abs(squeeze(freqresp(Gs_flex('da', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(2,:), 'DisplayName', 'Flex. Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_a/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2a = nexttile; hold on; for i = 1:length(strut_nums) plot(f, 180/pi*angle(int_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_2dof('da', 'u'), freqs, 'Hz'))), '-', 'color', colors(1,:)) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_flex('da', 'u'), freqs, 'Hz'))), '-', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1a,ax2a],'x'); xlim([10, 2e3]); xticks([1e1, 1e2, 1e3]); %% Compare the FRF and identified dynamics from u to Vs and da figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1a = nexttile([2,1]); hold on; plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], ... 'DisplayName', 'FRF'); for i = 2:length(strut_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(Gs_2dof('de', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(1,:), 'DisplayName', '2DoF Model') plot(freqs, abs(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(2,:), 'DisplayName', 'Flex. Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2a = nexttile; hold on; for i = 1:length(strut_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_2dof('de', 'u'), freqs, 'Hz'))), '-', 'color', colors(1,:)) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), '-', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1a,ax2a],'x'); xlim([10, 2e3]); xticks([1e1, 1e2, 1e3]); %% Compare the FRF and identified dynamics from u to Vs and da figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1a = nexttile([2,1]); hold on; plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ... 'DisplayName', 'FRF'); for i = 1:length(strut_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(Gs_2dof('Vs', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(1,:), 'DisplayName', '2DoF Model') plot(freqs, abs(squeeze(freqresp(Gs_flex('Vs', 'u'), freqs, 'Hz'))), '-', ... 'color', colors(2,:), 'DisplayName', 'Flex. Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2a = nexttile; hold on; for i = 1:length(strut_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_2dof('Vs', 'u'), freqs, 'Hz'))), '-', 'color', colors(1,:)) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_flex('Vs', 'u'), freqs, 'Hz'))), '-', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1a,ax2a],'x'); xlim([10, 2e3]); xticks([1e1, 1e2, 1e3]); %% Effect of a misalignment in Y-Direction % Considered misalignment in the Y direction dy_aligns = [-0.5, -0.1, 0.1, 0.5]*1e-3; % [m] % Transfer functions from u to de for all the misalignment in y direction Gs_dy_align = {zeros(length(dy_aligns), 1)}; for i = 1:length(dy_aligns) n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align_bot', [0; dy_aligns(i); 0], 'd_align_top', [0; dy_aligns(i); 0]); G = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); G.InputName = {'u'}; G.OutputName = {'Vs', 'de', 'da'}; Gs_dy_align(i) = {G}; end %% Effect of a misalignment in X-Direction % Considered misalignment in the X direction dx_aligns = [-0.1, -0.05, 0.05, 0.1]*1e-3; % [m] % Transfer functions from u to de for all the misalignment in x direction Gs_dx_align = {zeros(length(dx_aligns), 1)}; for i = 1:length(dx_aligns) n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align_bot', [dx_aligns(i); 0; 0], 'd_align_top', [dx_aligns(i); 0; 0]); G = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); G.InputName = {'u'}; G.OutputName = {'Vs', 'de', 'da'}; Gs_dx_align(i) = {G}; end %% Transfer function from Vs to de - effect of x-misalignment figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(dy_aligns) plot(freqs, abs(squeeze(freqresp(Gs_dy_align{i}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', sprintf('$d_y = %.1f$ [mm]', 1e3*dy_aligns(i))); end plot(freqs, abs(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), 'k-', ... 'DisplayName', 'aligned'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:length(dy_aligns) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_dy_align{i}('de', 'u'), freqs, 'Hz')))); end plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); xticks([1e1, 1e2, 1e3]); %% Transfer function from Vs to de - effect of x-misalignment figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(dx_aligns) plot(freqs, abs(squeeze(freqresp(Gs_dx_align{i}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', sprintf('$d_x = %.1f$ [mm]', 1e3*dx_aligns(i))); end plot(freqs, abs(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), 'k-', ... 'DisplayName', 'aligned'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:length(dx_aligns) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_dx_align{i}('de', 'u'), freqs, 'Hz')))); end plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_flex('de', 'u'), freqs, 'Hz'))), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); xticks([1e1, 1e2, 1e3]); %% Measurement of the y misalignment between the APA and the flexible joints % Mesured struts strut_nums = [1, 2, 3, 4, 5]; % Measured height differences in [mm] % R ("red" side), B ("black" side) % R Top B Top R Bot B Bot strut_align = [[-0.40, -0.60, -0.16, -0.82] % Strut 1 [-0.67, -0.30, -0.34, -0.63] % Strut 2 [-0.07, -0.88, -0.16, -0.79] % Strut 3 [-0.48, -0.46, 0.07, -1.00] % Strut 4 [-0.33, -0.64, -0.48, -0.52]]; % Strut 5 % Verification that the thickness difference between the APA shell and the flexible joints is 1mm thichness_diff_top = strut_align(:,1) + strut_align(:,2); % [mm] thichness_diff_bot = strut_align(:,1) + strut_align(:,2); % [mm] % Estimation of the dy misalignment dy_bot = (strut_align(:,1) - strut_align(:,2))/2; % [mm] dy_top = (strut_align(:,3) - strut_align(:,4))/2; % [mm] %% Idenfity the dynamics from u to de - misalignement estimated from measurement Gs_y_align = {zeros(size(strut_align,1), 1)}; % Measured dy alignment strut_align = 1e-3*[[-0.60, -0.82, -0.40, -0.16] [-0.30, -0.63, -0.67, -0.34] [-0.88, -0.79, -0.07, -0.16] [-0.48, 0.07, -0.46, -1.00] [-0.33, -0.48, -0.64, -0.52] [-0.34, -0.42, -0.63, -0.57]]; for i = 1:size(strut_align,1) n_hexapod.actuator = initializeAPA('type', 'flexible', ... 'd_align_bot', [0; strut_align(i, 2) - strut_align(i, 4); 0], ... 'd_align_top', [0; strut_align(i, 1) - strut_align(i, 3); 0]); G = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); G.InputName = {'u'}; G.OutputName = {'Vs', 'de', 'da'}; Gs_y_align(i) = {G}; end %% Idenfity the dynamics from u to de - misalignement tuned to have the best match d_aligns = [[-0.05, -0.3, 0]; [ 0, 0.5, 0]; [-0.1, -0.3, 0]; [ 0, 0.3, 0]; [-0.05, 0.05, 0]]'*1e-3; % Idenfity the transfer function from actuator to encoder for all cases Gs_xy_align = {zeros(size(d_aligns,2), 1)}; for i = 1:5 n_hexapod.actuator = initializeAPA('type', 'flexible', 'd_align_top', d_aligns(:,i), 'd_align_bot', d_aligns(:,i)); G = exp(-s*1e-4)*linearize(mdl, io, 0.0, opts); G.InputName = {'u'}; G.OutputName = {'Vs', 'de', 'da'}; Gs_xy_align(i) = {G}; end %% Comparison of the plants (encoder output) when tuning the misalignment figure; tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(f, abs(enc_frf(:, 1)), 'DisplayName', 'Measurement'); plot(freqs, abs(squeeze(freqresp(Gs_y_align{1}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', '$d_y$ from meas'); plot(freqs, abs(squeeze(freqresp(Gs_xy_align{1}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', 'Tuned $d_x$, $d_y$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; title('Strut 1'); xticks([1e1, 1e2, 1e3]); ax2 = nexttile(); hold on; plot(f, abs(enc_frf(:, 2)), 'DisplayName', 'Measurement'); plot(freqs, abs(squeeze(freqresp(Gs_y_align{2}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', '$d_y$ from meas'); plot(freqs, abs(squeeze(freqresp(Gs_xy_align{2}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', 'Tuned $d_x$, $d_y$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; title('Strut 2'); xticks([1e1, 1e2, 1e3]); ax3 = nexttile(); hold on; plot(f, abs(enc_frf(:, 3)), 'DisplayName', 'Measuremnet'); plot(freqs, abs(squeeze(freqresp(Gs_y_align{3}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', '$d_y$ from meas'); plot(freqs, abs(squeeze(freqresp(Gs_xy_align{3}('de', 'u'), freqs, 'Hz'))), ... 'DisplayName', 'Tuned $d_x$, $d_y$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; title('Strut 3'); xticks([1e1, 1e2, 1e3]); linkaxes([ax1,ax2,ax3],'xy'); xlim([10, 2e3]); ylim([1e-8, 1e-3]); %% Measurement of the y misalignment between the APA and the flexible joints after strut better alignment % Numbers of the measured legs strut_align_nums = [1 2 3 4 5 6]; % Measured height differences in [mm] % R ("red" side), B ("black" side) % R Top B Top R Bot B Bot strut_align = [[-0.54, -0.50, -0.50, -0.52] % strut 1 [-0.44, -0.55, -0.49, -0.49] % strut 2 [-0.48, -0.50, -0.50, -0.46] % strut 3 [-0.45, -0.51, -0.51, -0.45] % strut 4 [-0.50, -0.50, -0.50, -0.50] % strut 5 [-0.50, -0.49, -0.43, -0.54]]; % strut 6 % Verification that the thickness difference between the APA shell and the flexible joints is 1mm thichness_diff_top = strut_align(:,1) + strut_align(:,2); % [mm] thichness_diff_bot = strut_align(:,1) + strut_align(:,2); % [mm] % Estimation of the dy misalignment dy_bot = (strut_align(:,1) - strut_align(:,2))/2; % [mm] dy_top = (strut_align(:,3) - strut_align(:,4))/2; % [mm] %% New dynamical identified with re-aligned struts % Load the identification data leg_noise = {}; for i = 1:length(strut_align_nums) leg_noise(i) = {load(sprintf('frf_struts_align_%i_noise.mat', strut_align_nums(i)), 'u', 'Vs', 'de')}; end % Parameters for Frequency Analysis Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation win = hanning(Nfft); % Hanning window Noverlap = floor(Nfft/2); % Overlap between frequency analysis % Only used to have the frequency vector "f" [~, f] = tfestimate(leg_noise{1}.u, leg_noise{1}.de, win, Noverlap, Nfft, 1/Ts); % Transfer function from u to de (encoder) enc_frf_aligned = zeros(length(f), length(strut_align_nums)); for i = 1:length(strut_align_nums) enc_frf_aligned(:, i) = tfestimate(leg_noise{i}.u, leg_noise{i}.de, win, Noverlap, Nfft, 1/Ts); end %% Bode plot of the FRF from u to de figure; hold on; plot(f, abs(enc_frf(:, 1)), 'color', [colors(1,:), 0.5], ... 'DisplayName', 'Initial alignment'); for i = 1:length(strut_nums) plot(f, abs(enc_frf(:, i)), 'color', [colors(1,:), 0.5], ... 'HandleVisibility', 'off'); end plot(f, abs(enc_frf_aligned(:, 1)), 'color', [colors(2,:), 0.5], ... 'DisplayName', 'With positioning pin'); for i = 1:length(strut_align_nums) plot(f, abs(enc_frf_aligned(:, i)), 'color', [colors(2,:), 0.5], ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude $d_e/u$ [m/V]'); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); xlim([10, 2e3]); ylim([1e-8, 1e-3]);