%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Colors for the figures colors = colororder; %% Parameters for study kRx = 5; % Bending Stiffness [Nm/rad] Rxmax = 25e-3; % Bending Stroke [rad] h = 22.5e-3; % Height [m] %% Estimation of the force to test the full stroke Fxmax = kRx*Rxmax/h; % Force to induce maximum stroke [N] %% Estimated maximum stroke [m] dxmax = h*tan(Rxmax); %% Stiffness ka = 94e6; % Axial Stiffness [N/m] ks = 13e6; % Shear Stiffness [N/m] kb = 5; % Bending Stiffness [Nm/rad] kt = 260; % Torsional Stiffness [Nm/rad] %% Maximum force Fa = 469; % Axial Force before yield [N] Fs = 242; % Shear Force before yield [N] Fb = 0.118; % Bending Force before yield [Nm] Ft = 1.508; % Torsional Force before yield [Nm] %% Compute the corresponding stroke Xa = Fa/ka; % Axial Stroke before yield [m] Xs = Fs/ks; % Shear Stroke before yield [m] Xb = Fb/kb; % Bending Stroke before yield [rad] Xt = Ft/kt; % Torsional Stroke before yield [rad] %% Height between the joint's center and the force application point h = 22.5e-3; % [m] %% Estimated error due to shear epsilon_s = 100*abs(1-1/(1 + kb/(ks*h^2))); % Error in % %% Estimated error due to limited load cell stiffness kF = 50/0.05e-3; % Estimated load cell stiffness [N/m] epsilon_f = 100*abs(1-1/(1 + kb/(kF*h^2))); % Error in %