%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); addpath('APA300ML/'); open('APA300ML.slx'); % Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates % We first extract the stiffness and mass matrices. K = readmatrix('APA300ML_mat_K.CSV'); M = readmatrix('APA300ML_mat_M.CSV'); % #+caption: First 10x10 elements of the Mass matrix % #+RESULTS: % | 0.01 | -2e-06 | 1e-06 | 6e-09 | 5e-05 | -5e-09 | -0.0005 | -7e-07 | 6e-07 | -3e-09 | % | -2e-06 | 0.01 | 8e-07 | -2e-05 | -8e-09 | 2e-09 | -9e-07 | -0.0002 | 1e-08 | -9e-07 | % | 1e-06 | 8e-07 | 0.009 | 5e-10 | 1e-09 | -1e-09 | -5e-07 | 3e-08 | 6e-05 | 1e-10 | % | 6e-09 | -2e-05 | 5e-10 | 3e-07 | 2e-11 | -3e-12 | 3e-09 | 9e-07 | -4e-10 | 3e-09 | % | 5e-05 | -8e-09 | 1e-09 | 2e-11 | 6e-07 | -4e-11 | -1e-06 | -2e-09 | 1e-09 | -8e-12 | % | -5e-09 | 2e-09 | -1e-09 | -3e-12 | -4e-11 | 1e-07 | -2e-09 | -1e-09 | -4e-10 | -5e-12 | % | -0.0005 | -9e-07 | -5e-07 | 3e-09 | -1e-06 | -2e-09 | 0.01 | 1e-07 | -3e-07 | -2e-08 | % | -7e-07 | -0.0002 | 3e-08 | 9e-07 | -2e-09 | -1e-09 | 1e-07 | 0.01 | -4e-07 | 2e-05 | % | 6e-07 | 1e-08 | 6e-05 | -4e-10 | 1e-09 | -4e-10 | -3e-07 | -4e-07 | 0.009 | -2e-10 | % | -3e-09 | -9e-07 | 1e-10 | 3e-09 | -8e-12 | -5e-12 | -2e-08 | 2e-05 | -2e-10 | 3e-07 | % Then, we extract the coordinates of the interface nodes. [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA300ML_out_nodes_3D.txt'); % Piezoelectric parameters % In order to make the conversion from applied voltage to generated force or from the strain to the generated voltage, we need to defined some parameters corresponding to the piezoelectric material: d33 = 300e-12; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-8; % Permittivity under constant stress [F/m] sD = 1e-11; % Compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] C = 5e-6; % Stack capactiance [F] % The ratio of the developed force to applied voltage is: % #+name: eq:piezo_voltage_to_force % \begin{equation} % F_a = g_a V_a, \quad g_a = d_{33} n k_a % \end{equation} % where: % - $F_a$: developed force in [N] % - $n$: number of layers of the actuator stack % - $d_{33}$: strain constant in [m/V] % - $k_a$: actuator stack stiffness in [N/m] % - $V_a$: applied voltage in [V] % If we take the numerical values, we obtain: d33*n*ka % [N/V] % #+RESULTS: % : 5.64 % From cite:fleming14_desig_model_contr_nanop_system (page 123), the relation between relative displacement of the sensor stack and generated voltage is: % #+name: eq:piezo_strain_to_voltage % \begin{equation} % V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h % \end{equation} % where: % - $V_s$: measured voltage in [V] % - $d_{33}$: strain constant in [m/V] % - $\epsilon^T$: permittivity under constant stress in [F/m] % - $s^D$: elastic compliance under constant electric displacement in [m^2/N] % - $n$: number of layers of the sensor stack % - $\Delta h$: relative displacement in [m] % If we take the numerical values, we obtain: 1e-6*d33/(eT*sD*n) % [V/um] % Stiffness m = 0.001; % The transfer function from vertical external force to the relative vertical displacement is identified. %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); % The inverse of its DC gain is the axial stiffness of the APA: 1e-6/dcgain(G) % [N/um] % Resonance Frequency % The resonance frequency is specified to be between 650Hz and 840Hz. % This is also the case for the FEM model (Figure [[fig:apa300ml_resonance]]). freqs = logspace(2, 4, 5000); figure; hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); hold off; % Amplification factor % The amplification factor is the ratio of the vertical displacement to the stack displacement. %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); % The ratio of the two displacement is computed from the FEM model. abs(dcgain(G(1,1))./dcgain(G(2,1))) % #+RESULTS: % : 5.0749 % This is actually correct and approximately corresponds to the ratio of the piezo height and length: 75/15 % Stroke % Estimation of the actuator stroke: % \[ \Delta H = A n \Delta L \] % with: % - $\Delta H$ Axial Stroke of the APA % - $A$ Amplification factor (5 for the APA300ML) % - $n$ Number of stack used % - $\Delta L$ Stroke of the stack (0.1% of its length) 1e6 * 5 * 3 * 20e-3 * 0.1e-2 % Identification of the Dynamics from actuator to replace displacement % We first set the mass to be approximately zero. m = 0.01; % The dynamics is identified from the applied force to the measured relative displacement. %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; Gh = -linearize(mdl, io); % The same dynamics is identified for a payload mass of 10Kg. m = 10; %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; Ghm = -linearize(mdl, io); freqs = logspace(0, 4, 5000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); % #+name: fig:apa300ml_plant_dynamics % #+caption: Transfer function from forces applied by the stack to the axial displacement of the APA % #+RESULTS: % [[file:figs/apa300ml_plant_dynamics.png]] % The root locus corresponding to Direct Velocity Feedback with a mass of 10kg is shown in Figure [[fig:apa300ml_dvf_root_locus]]. figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(Ghm)), imag(pole(G)), 'kx'); plot(real(tzero(Ghm)), imag(tzero(G)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Ghm, gains(k)*s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); % Identification of the Dynamics from actuator to force sensor % Let's use 2 stacks as a force sensor and 1 stack as force actuator. % The transfer function from actuator voltage to sensor voltage is identified and shown in Figure [[fig:apa300ml_iff_plant]]. m = 10; %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; Giff = -linearize(mdl, io); freqs = logspace(0, 4, 5000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Giff, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Giff, freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:apa300ml_iff_plant % #+caption: Transfer function from actuator to force sensor % #+RESULTS: % [[file:figs/apa300ml_iff_plant.png]] % For root locus corresponding to IFF is shown in Figure [[fig:apa300ml_iff_root_locus]]. figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(Giff)), imag(pole(Giff)), 'kx'); plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Giff, gains(k)/s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); % Identification for a simpler model % The goal in this section is to identify the parameters of a simple APA model from the FEM. % This can be useful is a lower order model is to be used for simulations. % The presented model is based on cite:souleille18_concep_activ_mount_space_applic. % The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure [[fig:souleille18_model_piezo]]). % The parameters are shown in the table below. % #+name: fig:souleille18_model_piezo % #+caption: Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator % [[file:./figs/souleille18_model_piezo.png]] % #+caption:Parameters used for the model of the APA 100M % | | Meaning | % |-------+----------------------------------------------------------------| % | $k_e$ | Stiffness used to adjust the pole of the isolator | % | $k_1$ | Stiffness of the metallic suspension when the stack is removed | % | $k_a$ | Stiffness of the actuator | % | $c_1$ | Added viscous damping | % The goal is to determine $k_e$, $k_a$ and $k_1$ so that the simplified model fits the FEM model. % \[ \alpha = \frac{x_1}{f}(\omega=0) = \frac{\frac{k_e}{k_e + k_a}}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] % \[ \beta = \frac{x_1}{F}(\omega=0) = \frac{1}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] % If we can fix $k_a$, we can determine $k_e$ and $k_1$ with: % \[ k_e = \frac{k_a}{\frac{\beta}{\alpha} - 1} \] % \[ k_1 = \frac{1}{\beta} - \frac{k_e k_a}{k_e + k_a} \] m = 10; %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N] io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m] io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force [N] io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m] io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V] io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; % Stack Displacement [m] G = linearize(mdl, io); G.InputName = {'Fd', 'w', 'Fa'}; G.OutputName = {'y', 'Fs', 'd'}; % From the identified dynamics, compute $\alpha$ and $\beta$ alpha = abs(dcgain(G('y', 'Fa'))); beta = abs(dcgain(G('y', 'Fd'))); % $k_a$ is estimated using the following formula: ka = 0.8/abs(dcgain(G('y', 'Fa'))); % The factor can be adjusted to better match the curves. % Then $k_e$ and $k_1$ are computed. ke = ka/(beta/alpha - 1); k1 = 1/beta - ke*ka/(ke + ka); % #+RESULTS: % | | Value [N/um] | % |----+--------------| % | ka | 40.5 | % | ke | 1.5 | % | k1 | 0.4 | % The damping in the system is adjusted to match the FEM model if necessary. c1 = 1e2; % The analytical model of the simpler system is defined below: Ga = 1/(m*s^2 + k1 + c1*s + ke*ka/(ke + ka)) * ... [ 1 , k1 + c1*s + ke*ka/(ke + ka) , ke/(ke + ka) ; -ke*ka/(ke + ka), ke*ka/(ke + ka)*m*s^2 , -ke/(ke + ka)*(m*s^2 + c1*s + k1)]; Ga.InputName = {'Fd', 'w', 'Fa'}; Ga.OutputName = {'y', 'Fs'}; % And the DC gain is adjusted for the force sensor: F_gain = dcgain(G('Fs', 'Fd'))/dcgain(Ga('Fs', 'Fd')); % The dynamics of the FEM model and the simpler model are compared in Figure [[fig:apa300ml_comp_simpler_model]]. freqs = logspace(0, 5, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]'); ylim([1e-6, 1e2]); ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ylim([1e-14, 1e-6]); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ylim([1e-14, 1e-4]); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [m/m]'); ylim([1e2, 1e8]); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [m/N]'); ylim([1e-4, 1e1]); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [m/N]'); ylim([1e-7, 1e2]); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); % #+name: fig:apa300ml_comp_simpler_model % #+caption: Comparison of the Dynamics between the FEM model and the simplified one % #+RESULTS: % [[file:figs/apa300ml_comp_simpler_model.png]] % The simplified model has also been implemented in Simscape. % The dynamics of the Simscape simplified model is identified and compared with the FEM one in Figure [[fig:apa300ml_comp_simpler_simscape]]. %% Name of the Simulink File mdl = 'APA300ML_simplified'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N] io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m] io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force [N] io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m] io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V] Gs = linearize(mdl, io); Gs.InputName = {'Fd', 'w', 'Fa'}; Gs.OutputName = {'y', 'Fs'}; freqs = logspace(0, 5, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]'); ylim([1e-6, 1e2]); ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ylim([1e-14, 1e-6]); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ylim([1e-14, 1e-4]); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [m/m]'); ylim([1e2, 1e8]); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [m/N]'); ylim([1e-4, 1e1]); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [m/N]'); ylim([1e-7, 1e2]); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); % Integral Force Feedback % In this section, Integral Force Feedback control architecture is applied on the APA300ML. % First, the plant (dynamics from voltage actuator to voltage sensor is identified). Kiff = tf(0); % The payload mass is set to 10kg. m = 10; %% Name of the Simulink File mdl = 'APA300ML_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/APA300ML'], 1, 'openoutput'); io_i = io_i + 1; G_ol = linearize(mdl, io); G_ol.InputName = {'w', 'f', 'F'}; G_ol.OutputName = {'x1', 'Fs'}; G = G_ol({'Fs'}, {'f'}); % The obtained dynamics is shown in Figure [[fig:piezo_amplified_iff_plant]]. freqs = logspace(1, 5, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:piezo_amplified_iff_plant % #+caption: IFF Plant % #+RESULTS: % [[file:figs/piezo_amplified_iff_plant.png]] % The controller is defined below and the loop gain is shown in Figure [[fig:piezo_amplified_iff_loop_gain]]. Kiff = -1e3/s; freqs = logspace(1, 5, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G*Kiff, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*Kiff, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:piezo_amplified_iff_loop_gain % #+caption: IFF Loop Gain % #+RESULTS: % [[file:figs/piezo_amplified_iff_loop_gain.png]] % Now the closed-loop system is identified again and compare with the open loop system in Figure [[fig:piezo_amplified_iff_comp]]. % It is the expected behavior as shown in the Figure [[fig:souleille18_results]] (from cite:souleille18_concep_activ_mount_space_applic). clear io; io_i = 1; io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/APA300ML'], 1, 'output'); io_i = io_i + 1; Giff = linearize(mdl, io); Giff.InputName = {'w', 'f', 'F'}; Giff.OutputName = {'x1', 'Fs'}; freqs = logspace(0, 3, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]') ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [N/m]'); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [N/N]'); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [N/N]'); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');