#+TITLE: Finite Element Model with Simscape :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Amplified Piezoelectric Actuator - 3D elements ** Introduction :ignore: The idea here is to: - export a FEM of an amplified piezoelectric actuator from Ansys to Matlab - import it into a Simscape model - compare the obtained dynamics - add 10kg mass on top of the actuator and identify the dynamics - compare with results from Ansys where 10kg are directly added to the FEM ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('./src/'); addpath('./data/piezo_amplified_3d/'); #+end_src #+begin_src matlab :exports none open('piezo_amplified_3d'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = extractMatrix('piezo_amplified_3d_K.txt'); M = extractMatrix('piezo_amplified_3d_M.txt'); #+end_src Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_3d.txt'); #+end_src #+begin_src matlab save('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src ** Output parameters #+begin_src matlab load('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f '); #+end_src #+RESULTS: | Total number of Nodes | 168959 | | Number of interface Nodes | 13 | | Number of Modes | 30 | | Size of M and K matrices | 108 | #+name: fig:amplified_piezo_interface_nodes #+caption: Interface Nodes for the Amplified Piezo Actuator [[file:figs/amplified_piezo_interface_nodes.png]] #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f '); #+end_src #+caption: Coordinates of the interface nodes #+RESULTS: | Node i | Node Number | x [m] | y [m] | z [m] | |--------+-------------+--------+-------+-------| | 1.0 | 168947.0 | 0.0 | 0.03 | 0.0 | | 2.0 | 168949.0 | 0.0 | -0.03 | 0.0 | | 3.0 | 168950.0 | -0.035 | 0.0 | 0.0 | | 4.0 | 168951.0 | -0.028 | 0.0 | 0.0 | | 5.0 | 168952.0 | -0.021 | 0.0 | 0.0 | | 6.0 | 168953.0 | -0.014 | 0.0 | 0.0 | | 7.0 | 168954.0 | -0.007 | 0.0 | 0.0 | | 8.0 | 168955.0 | 0.0 | 0.0 | 0.0 | | 9.0 | 168956.0 | 0.007 | 0.0 | 0.0 | | 10.0 | 168957.0 | 0.014 | 0.0 | 0.0 | | 11.0 | 168958.0 | 0.021 | 0.0 | 0.0 | | 12.0 | 168959.0 | 0.035 | 0.0 | 0.0 | | 13.0 | 168960.0 | 0.028 | 0.0 | 0.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(K(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Stiffness matrix #+RESULTS: | 300000000.0 | -30000.0 | 8000.0 | -200.0 | -30.0 | -60000.0 | 20000000.0 | -4000.0 | 500.0 | 8 | | -30000.0 | 100000000.0 | 400.0 | 30.0 | 200.0 | -1 | 4000.0 | -8000000.0 | 800.0 | 7 | | 8000.0 | 400.0 | 50000000.0 | -800000.0 | -300.0 | -40.0 | 300.0 | 100.0 | 5000000.0 | 40000.0 | | -200.0 | 30.0 | -800000.0 | 20000.0 | 5 | 1 | -10.0 | -2 | -40000.0 | -300.0 | | -30.0 | 200.0 | -300.0 | 5 | 40000.0 | 0.3 | -4 | -10.0 | 40.0 | 0.4 | | -60000.0 | -1 | -40.0 | 1 | 0.3 | 3000.0 | 7000.0 | 0.8 | -1 | 0.0003 | | 20000000.0 | 4000.0 | 300.0 | -10.0 | -4 | 7000.0 | 300000000.0 | 20000.0 | 3000.0 | 80.0 | | -4000.0 | -8000000.0 | 100.0 | -2 | -10.0 | 0.8 | 20000.0 | 100000000.0 | -4000.0 | -100.0 | | 500.0 | 800.0 | 5000000.0 | -40000.0 | 40.0 | -1 | 3000.0 | -4000.0 | 50000000.0 | 800000.0 | | 8 | 7 | 40000.0 | -300.0 | 0.4 | 0.0003 | 80.0 | -100.0 | 800000.0 | 20000.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Mass matrix #+RESULTS: | 0.03 | 2e-06 | -2e-07 | 1e-08 | 2e-08 | 0.0002 | -0.001 | 2e-07 | -8e-08 | -9e-10 | | 2e-06 | 0.02 | -5e-07 | 7e-09 | 3e-08 | 2e-08 | -3e-07 | 0.0003 | -1e-08 | 1e-10 | | -2e-07 | -5e-07 | 0.02 | -9e-05 | 4e-09 | -1e-08 | 2e-07 | -2e-08 | -0.0006 | -5e-06 | | 1e-08 | 7e-09 | -9e-05 | 1e-06 | 6e-11 | 4e-10 | -1e-09 | 3e-11 | 5e-06 | 3e-08 | | 2e-08 | 3e-08 | 4e-09 | 6e-11 | 1e-06 | 2e-10 | -2e-09 | 2e-10 | -7e-09 | -4e-11 | | 0.0002 | 2e-08 | -1e-08 | 4e-10 | 2e-10 | 2e-06 | -2e-06 | -1e-09 | -7e-10 | -9e-12 | | -0.001 | -3e-07 | 2e-07 | -1e-09 | -2e-09 | -2e-06 | 0.03 | -2e-06 | -1e-07 | -5e-09 | | 2e-07 | 0.0003 | -2e-08 | 3e-11 | 2e-10 | -1e-09 | -2e-06 | 0.02 | -8e-07 | -1e-08 | | -8e-08 | -1e-08 | -0.0006 | 5e-06 | -7e-09 | -7e-10 | -1e-07 | -8e-07 | 0.02 | 9e-05 | | -9e-10 | 1e-10 | -5e-06 | 3e-08 | -4e-11 | -9e-12 | -5e-09 | -1e-08 | 9e-05 | 1e-06 | Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block. ** Piezoelectric parameters Parameters for the APA95ML: #+begin_src matlab d33 = 3e-10; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-7; % Permittivity under constant stress [F/m] sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] C = 5e-6; % Stack capactiance [F] #+end_src #+begin_src matlab na = 2; % Number of stacks used as actuator ns = 1; % Number of stacks used as force sensor #+end_src The ratio of the developed force to applied voltage is $d_{33} n k_a$ in [N/V]. We denote this constant by $g_a$ and: \[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \] #+begin_src matlab :results replace value d33*(na*n)*(ka/(na + ns)) % [N/V] #+end_src #+RESULTS: : 3.76 From cite:fleming14_desig_model_contr_nanop_system (page 123), the relation between relative displacement and generated voltage is: \[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \] where: - $V_s$: measured voltage [V] - $d_{33}$: strain constant [m/V] - $\epsilon^T$: permittivity under constant stress [F/m] - $s^D$: elastic compliance under constant electric displacement [m^2/N] - $n$: number of layers - $\Delta h$: relative displacement [m] #+begin_src matlab :results replace value 1e-6*d33/(eT*sD*ns*n) % [V/um] #+end_src #+RESULTS: : 1.1719 ** Identification of the Dynamics The flexible element is imported using the =Reduced Order Flexible Solid= simscape block. To model the actuator, an =Internal Force= block is added between the nodes 3 and 12. A =Relative Motion Sensor= block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo. One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame. We first set the mass to be zero. #+begin_src matlab m = 0.01; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gh = -linearize(mdl, io); #+end_src Then, we add 10Kg of mass: #+begin_src matlab m = 5; #+end_src And the dynamics is identified. The two identified dynamics are compared in Figure [[fig:dynamics_act_disp_comp_mass]]. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Ghm = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_act_disp_comp_mass.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_act_disp_comp_mass #+caption: Dynamics from $F$ to $d$ without a payload and with a 10kg payload #+RESULTS: [[file:figs/dynamics_act_disp_comp_mass.png]] ** Comparison with Ansys Let's import the results from an Harmonic response analysis in Ansys. #+begin_src matlab Gresp0 = readtable('FEA_HarmResponse_00kg.txt'); Gresp10 = readtable('FEA_HarmResponse_10kg.txt'); #+end_src The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure [[fig:dynamics_force_disp_comp_anasys]]. #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',1) plot(Gresp0{:, 2}, 1e-3*Gresp0{:, 3}, '--'); set(gca,'ColorOrderIndex',2) plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',2) plot(Gresp0{:, 2}, 1e-3*Gresp10{:, 3}, '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$, Simscape'); set(gca,'ColorOrderIndex',1) plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp0{:, 4}), '--', ... 'DisplayName', '$m = 0kg$, Ansys'); set(gca,'ColorOrderIndex',2) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$, Simscape'); set(gca,'ColorOrderIndex',2) plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp10{:, 4}), '--', ... 'DisplayName', '$m = 10kg$, Ansys'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_force_disp_comp_anasys.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_force_disp_comp_anasys #+caption: Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys #+RESULTS: [[file:figs/dynamics_force_disp_comp_anasys.png]] ** Force Sensor The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13. The obtained dynamics is shown in Figure [[fig:dynamics_force_force_sensor_comp_mass]]. #+begin_src matlab m = 0; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gf = linearize(mdl, io); #+end_src #+begin_src matlab m = 10; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gfm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gf, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gfm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_force_force_sensor_comp_mass.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_force_force_sensor_comp_mass #+caption: Dynamics from $F$ to $F_m$ for $m=0$ and $m = 10kg$ #+RESULTS: [[file:figs/dynamics_force_force_sensor_comp_mass.png]] ** Distributed Actuator #+begin_src matlab m = 0; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d_distri'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gd = linearize(mdl, io); #+end_src Then, we add 10Kg of mass: #+begin_src matlab m = 10; #+end_src And the dynamics is identified. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d_distri'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gdm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(Gdm, freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gd, freqs, 'Hz')))), '--', ... 'DisplayName', '$m = 0kg$, distri'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gdm, freqs, 'Hz')))), '--', ... 'DisplayName', '$m = 10kg$, distri'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src ** Distributed Actuator and Force Sensor #+begin_src matlab m = 0; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d_distri_act_sens'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; Gfd = linearize(mdl, io); #+end_src #+begin_src matlab m = 10; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d_distri_act_sens'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; Gfdm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gf, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gfm, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gfd, freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(Gfdm, freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfd, freqs, 'Hz')))), '--', ... 'DisplayName', '$m = 0kg$, distri'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfdm, freqs, 'Hz')))), '--', ... 'DisplayName', '$m = 10kg$, distri'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src ** Dynamics from input voltage to displacement #+begin_src matlab m = 5; #+end_src And the dynamics is identified. The two identified dynamics are compared in Figure [[fig:dynamics_act_disp_comp_mass]]. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/V'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; G = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); % xlim([10, 5e3]); #+end_src #+begin_src matlab save('../test-bench-apa/mat/fem_model_5kg.mat', 'G') #+end_src ** Dynamics from input voltage to output voltage #+begin_src matlab m = 5; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; G = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([10, 5e3]); #+end_src * APA300ML ** Introduction :ignore: #+name: fig:apa300ml_ansys #+caption: Ansys FEM of the APA300ML [[file:figs/apa300ml_ansys.jpg]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('./src/'); addpath('./data/APA300ML/'); #+end_src #+begin_src matlab :exports none open('APA300ML_test_bench'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = extractMatrix('mat_K-48modes-7MDoF.matrix'); M = extractMatrix('mat_M-48modes-7MDoF.matrix'); #+end_src #+begin_src matlab K = extractMatrix('mat_K-80modes-7MDoF.matrix'); M = extractMatrix('mat_M-80modes-7MDoF.matrix'); #+end_src Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('Nodes_MDoF_NLIST_MLIST.txt'); #+end_src #+begin_src matlab save('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src ** Output parameters #+begin_src matlab load('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f '); #+end_src #+RESULTS: | Total number of Nodes | 7 | | Number of interface Nodes | 7 | | Number of Modes | 6 | | Size of M and K matrices | 48 | #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f '); #+end_src #+caption: Coordinates of the interface nodes #+RESULTS: | Node i | Node Number | x [m] | y [m] | z [m] | |--------+-------------+---------+--------+-------| | 1.0 | 53917.0 | 0.0 | -0.015 | 0.0 | | 2.0 | 53918.0 | 0.0 | 0.015 | 0.0 | | 3.0 | 53919.0 | -0.0325 | 0.0 | 0.0 | | 4.0 | 53920.0 | -0.0125 | 0.0 | 0.0 | | 5.0 | 53921.0 | -0.0075 | 0.0 | 0.0 | | 6.0 | 53922.0 | 0.0125 | 0.0 | 0.0 | | 7.0 | 53923.0 | 0.0325 | 0.0 | 0.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(K(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Stiffness matrix #+RESULTS: | 200000000.0 | 30000.0 | 50000.0 | 200.0 | -100.0 | -300000.0 | 10000000.0 | -6000.0 | 20000.0 | -60.0 | | 30000.0 | 7000000.0 | 10000.0 | 30.0 | -30.0 | -70.0 | 7000.0 | -500000.0 | 3000.0 | -10.0 | | 50000.0 | 10000.0 | 30000000.0 | 200000.0 | -200.0 | -100.0 | 20000.0 | -2000.0 | 2000000.0 | -9000.0 | | 200.0 | 30.0 | 200000.0 | 1000.0 | -0.8 | -0.4 | 50.0 | -6 | 9000.0 | -30.0 | | -100.0 | -30.0 | -200.0 | -0.8 | 10000.0 | 0.2 | -40.0 | 10.0 | 20.0 | -0.05 | | -300000.0 | -70.0 | -100.0 | -0.4 | 0.2 | 900.0 | -30000.0 | 10.0 | -40.0 | 0.1 | | 10000000.0 | 7000.0 | 20000.0 | 50.0 | -40.0 | -30000.0 | 200000000.0 | -50000.0 | 30000.0 | -50.0 | | -6000.0 | -500000.0 | -2000.0 | -6 | 10.0 | 10.0 | -50000.0 | 7000000.0 | -4000.0 | 8 | | 20000.0 | 3000.0 | 2000000.0 | 9000.0 | 20.0 | -40.0 | 30000.0 | -4000.0 | 30000000.0 | -200000.0 | | -60.0 | -10.0 | -9000.0 | -30.0 | -0.05 | 0.1 | -50.0 | 8 | -200000.0 | 1000.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Mass matrix #+RESULTS: | 0.01 | 7e-06 | -5e-06 | -6e-08 | 3e-09 | -5e-05 | -0.0005 | -2e-07 | -3e-06 | 1e-08 | | 7e-06 | 0.009 | 4e-07 | 6e-09 | -4e-09 | -3e-08 | -2e-07 | 6e-05 | 5e-07 | -1e-09 | | -5e-06 | 4e-07 | 0.01 | 2e-05 | 2e-08 | 3e-08 | -2e-06 | -1e-07 | -0.0002 | 9e-07 | | -6e-08 | 6e-09 | 2e-05 | 3e-07 | 1e-10 | 3e-10 | -7e-09 | 2e-10 | -9e-07 | 3e-09 | | 3e-09 | -4e-09 | 2e-08 | 1e-10 | 1e-07 | -3e-12 | 6e-09 | -2e-10 | -3e-09 | 9e-12 | | -5e-05 | -3e-08 | 3e-08 | 3e-10 | -3e-12 | 6e-07 | 1e-06 | -3e-09 | 2e-08 | -7e-11 | | -0.0005 | -2e-07 | -2e-06 | -7e-09 | 6e-09 | 1e-06 | 0.01 | -8e-06 | -2e-06 | 9e-09 | | -2e-07 | 6e-05 | -1e-07 | 2e-10 | -2e-10 | -3e-09 | -8e-06 | 0.009 | 1e-07 | 2e-09 | | -3e-06 | 5e-07 | -0.0002 | -9e-07 | -3e-09 | 2e-08 | -2e-06 | 1e-07 | 0.01 | -2e-05 | | 1e-08 | -1e-09 | 9e-07 | 3e-09 | 9e-12 | -7e-11 | 9e-09 | 2e-09 | -2e-05 | 3e-07 | Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block. ** Piezoelectric parameters Parameters for the APA95ML: #+begin_src matlab d33 = 3e-10; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-8; % Permittivity under constant stress [F/m] sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] C = 5e-6; % Stack capactiance [F] #+end_src #+begin_src matlab na = 3; % Number of stacks used as actuator ns = 0; % Number of stacks used as force sensor #+end_src The ratio of the developed force to applied voltage is $d_{33} n k_a$ in [N/V]. We denote this constant by $g_a$ and: \[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \] #+begin_src matlab :results replace value d33*(na*n)*(ka/(na + ns)) % [N/V] #+end_src #+RESULTS: : 1.88 From cite:fleming14_desig_model_contr_nanop_system (page 123), the relation between relative displacement and generated voltage is: \[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \] where: - $V_s$: measured voltage [V] - $d_{33}$: strain constant [m/V] - $\epsilon^T$: permittivity under constant stress [F/m] - $s^D$: elastic compliance under constant electric displacement [m^2/N] - $n$: number of layers - $\Delta h$: relative displacement [m] #+begin_src matlab :results replace value 1e-6*d33/(eT*sD*ns*n) % [V/um] #+end_src #+RESULTS: : 5.8594 ** Identification of the APA Characteristics *** Stiffness #+begin_src matlab :exports none m = 0.001; #+end_src The transfer function from vertical external force to the relative vertical displacement is identified. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src The inverse of its DC gain is the axial stiffness of the APA: #+begin_src matlab :results replace value 1e-6/dcgain(G) % [N/um] #+end_src #+RESULTS: : 1.8634 The specified stiffness in the datasheet is $k = 1.8\, [N/\mu m]$. *** Resonance Frequency The resonance frequency is specified to be between 650Hz and 840Hz. This is also the case for the FEM model (Figure [[fig:apa300ml_resonance]]). #+begin_src matlab :exports none freqs = logspace(2, 4, 5000); figure; hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); hold off; #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_resonance.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa300ml_resonance #+caption: First resonance is around 800Hz #+RESULTS: [[file:figs/apa300ml_resonance.png]] *** Amplification factor The amplification factor is the ratio of the axial displacement to the stack displacement. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src The ratio of the two displacement is computed from the FEM model. #+begin_src matlab :results replace value -dcgain(G(1,1))./dcgain(G(2,1)) #+end_src #+RESULTS: : 4.936 If we take the ratio of the piezo height and length (approximation of the amplification factor): #+begin_src matlab :results replace value 75/15 #+end_src #+RESULTS: : 5 *** Stroke Estimation of the actuator stroke: \[ \Delta H = A n \Delta L \] with: - $\Delta H$ Axial Stroke of the APA - $A$ Amplification factor (5 for the APA300ML) - $n$ Number of stack used - $\Delta L$ Stroke of the stack (0.1% of its length) #+begin_src matlab :results replace value 1e6 * 5 * 3 * 20e-3 * 0.1e-2 #+end_src #+RESULTS: : 300 This is exactly the specified stroke in the data-sheet. ** Identification of the Dynamics The flexible element is imported using the =Reduced Order Flexible Solid= simscape block. To model the actuator, an =Internal Force= block is added between the nodes 3 and 12. A =Relative Motion Sensor= block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo. One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame. We first set the mass to be zero. #+begin_src matlab :exports none m = 0.01; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gh = -linearize(mdl, io); #+end_src The same dynamics is identified for a payload mass of 10Kg. #+begin_src matlab m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Ghm = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_plant_dynamics.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa300ml_plant_dynamics #+caption: Transfer function from forces applied by the stack to the axial displacement of the APA #+RESULTS: [[file:figs/apa300ml_plant_dynamics.png]] ** IFF Let's use 2 stacks as actuators and 1 stack as force sensor. The transfer function from actuator to sensors is identified and shown in Figure [[fig:apa300ml_iff_plant]]. #+begin_src matlab :exports none m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; Giff = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Giff, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Giff, freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_iff_plant.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa300ml_iff_plant #+caption: Transfer function from actuator to force sensor #+RESULTS: [[file:figs/apa300ml_iff_plant.png]] For root locus corresponding to IFF is shown in Figure [[fig:apa300ml_iff_root_locus]]. #+begin_src matlab :exports none figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(Giff)), imag(pole(Giff)), 'kx'); plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Giff, gains(k)/s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_iff_root_locus #+caption: Root Locus for IFF #+RESULTS: [[file:figs/apa300ml_iff_root_locus.png]] ** DVF Now the dynamics from the stack actuator to the relative motion sensor is identified and shown in Figure [[fig:apa300ml_dvf_plant]]. #+begin_src matlab :exports none m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; G = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_dvf_plant.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa300ml_dvf_plant #+caption: Transfer function from stack actuator to relative motion sensor #+RESULTS: [[file:figs/apa300ml_dvf_plant.png]] The root locus for DVF is shown in Figure [[fig:apa300ml_dvf_root_locus]]. #+begin_src matlab :exports none figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(G)), imag(pole(G)), 'kx'); plot(real(tzero(G)), imag(tzero(G)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(G, gains(k)*s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_dvf_root_locus #+caption: Root Locus for Direct Velocity Feedback #+RESULTS: [[file:figs/apa300ml_dvf_root_locus.png]] ** TODO Sensor Fusion :noexport: - [ ] What is the goal of that? Special control properties, lower the sensor noise? Use the relative motion sensor at low frequency and the force sensor at high frequency. #+begin_src matlab m = 10; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'APA300ML_test_bench'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); Gresp = squeeze(freqresp(G, freqs, 'Hz')); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(Gresp(1, :)), '-'); plot(freqs, abs(Gresp(2, :)), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(Gresp(1, :))), '-', ... 'DisplayName', 'Force'); plot(freqs, 180/pi*unwrap(angle(Gresp(2, :))), '-', ... 'DisplayName', 'Displacement'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src Merge around 1kHz #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(Gresp(1, :).*squeeze(freqresp(0.0065/s^2, freqs, 'Hz'))'), '-'); plot(freqs, abs(Gresp(2, :)), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(Gresp(1, :).*squeeze(freqresp(1/s^2, freqs, 'Hz'))')), '-', ... 'DisplayName', 'Force'); plot(freqs, 180/pi*unwrap(angle(Gresp(2, :))), '-', ... 'DisplayName', 'Displacement'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src LPF and HPF #+begin_src matlab n = 3; w0 = 2*pi*1e3; G0 = 1/10; G1 = 1e5; Gc = 1/2; W1 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; n = 3; w0 = 2*pi*1e3; G0 = 1e5; G1 = 0.1; Gc = 1/2; W2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; #+end_src #+begin_src matlab P = [W1 -W1; 0 W2; 1 0]; [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); H1 = 1 - H2; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); Gresp = squeeze(freqresp(G, freqs, 'Hz')); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(Gresp(1, :).*squeeze(freqresp(0.0065/s^2*H2, freqs, 'Hz'))'), '-'); plot(freqs, abs(Gresp(2, :).*squeeze(freqresp(H1, freqs, 'Hz'))'), '-'); plot(freqs, abs(Gresp(2, :).*squeeze(freqresp(H1, freqs, 'Hz'))' + Gresp(1, :).*squeeze(freqresp(0.0065/s^2*H2, freqs, 'Hz'))'), 'k--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(Gresp(1, :).*squeeze(freqresp(0.0065/s^2*H2, freqs, 'Hz'))')), '-', ... 'DisplayName', 'Force'); plot(freqs, 180/pi*unwrap(angle(Gresp(2, :).*squeeze(freqresp(H1, freqs, 'Hz'))')), '-', ... 'DisplayName', 'Displacement'); plot(freqs, 180/pi*unwrap(angle(Gresp(2, :).*squeeze(freqresp(H1, freqs, 'Hz'))' + Gresp(1, :).*squeeze(freqresp(0.0065/s^2*H2, freqs, 'Hz'))')), 'k--', ... 'DisplayName', 'Super Sensor'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :exports none Gss = -zpk(G(1)*0.0065/s^2*H2 + G(2)*H1); freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gss, freqs, 'Hz'))'), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*(angle(squeeze(freqresp(Gss, freqs, 'Hz'))')), '-', ... 'DisplayName', 'Force'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src Root locus #+begin_src matlab figure; gains = logspace(4, 7, 100); hold on; plot(real(pole(Gss)), imag(pole(Gss)), 'kx'); plot(real(tzero(Gss)), imag(tzero(Gss)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Gss, gains(k)*s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); #+end_src * Flexible Joint ** Introduction :ignore: #+name: fig:flexor_id16_screenshot #+caption: Flexor studied [[file:figs/flexor_id16_screenshot.png]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('./src/'); addpath('./data/flexor_ID16/'); #+end_src #+begin_src matlab :exports none open('flexor_ID16.slx'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = extractMatrix('mat_K_6modes_2MDoF.matrix'); M = extractMatrix('mat_M_6modes_2MDoF.matrix'); #+end_src Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt'); #+end_src #+begin_src matlab save('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src ** Output parameters #+begin_src matlab load('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f '); #+end_src #+RESULTS: | Total number of Nodes | 2 | | Number of interface Nodes | 2 | | Number of Modes | 6 | | Size of M and K matrices | 18 | #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f '); #+end_src #+caption: Coordinates of the interface nodes #+RESULTS: | Node i | Node Number | x [m] | y [m] | z [m] | |--------+-------------+-------+-------+-------| | 1.0 | 181278.0 | 0.0 | 0.0 | 0.0 | | 2.0 | 181279.0 | 0.0 | 0.0 | -0.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(K(1:10, 1:10), {}, {}, ' %.2e '); #+end_src #+caption: First 10x10 elements of the Stiffness matrix #+RESULTS: | 11200000.0 | 195.0 | 2220.0 | -0.719 | -265.0 | 1.59 | -11200000.0 | -213.0 | -2220.0 | 0.147 | | 195.0 | 11400000.0 | 1290.0 | -148.0 | -0.188 | 2.41 | -212.0 | -11400000.0 | -1290.0 | 148.0 | | 2220.0 | 1290.0 | 119000000.0 | 1.31 | 1.49 | 1.79 | -2220.0 | -1290.0 | -119000000.0 | -1.31 | | -0.719 | -148.0 | 1.31 | 33.0 | 0.000488 | -0.000977 | 0.141 | 148.0 | -1.31 | -33.0 | | -265.0 | -0.188 | 1.49 | 0.000488 | 33.0 | 0.00293 | 266.0 | 0.154 | -1.49 | 0.00026 | | 1.59 | 2.41 | 1.79 | -0.000977 | 0.00293 | 236.0 | -1.32 | -2.55 | -1.79 | 0.000379 | | -11200000.0 | -212.0 | -2220.0 | 0.141 | 266.0 | -1.32 | 11400000.0 | 24600.0 | 1640.0 | 120.0 | | -213.0 | -11400000.0 | -1290.0 | 148.0 | 0.154 | -2.55 | 24600.0 | 11400000.0 | 1290.0 | -72.0 | | -2220.0 | -1290.0 | -119000000.0 | -1.31 | -1.49 | -1.79 | 1640.0 | 1290.0 | 119000000.0 | 1.32 | | 0.147 | 148.0 | -1.31 | -33.0 | 0.00026 | 0.000379 | 120.0 | -72.0 | 1.32 | 34.7 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Mass matrix #+RESULTS: | 0.02 | 1e-09 | -4e-08 | -1e-10 | 0.0002 | -3e-11 | 0.004 | 5e-08 | 7e-08 | 1e-10 | | 1e-09 | 0.02 | -3e-07 | -0.0002 | -1e-10 | -2e-09 | 2e-08 | 0.004 | 3e-07 | 1e-05 | | -4e-08 | -3e-07 | 0.02 | 7e-10 | -2e-09 | 1e-09 | 3e-07 | 7e-08 | 0.003 | 1e-09 | | -1e-10 | -0.0002 | 7e-10 | 4e-06 | -1e-12 | -6e-13 | 2e-10 | -7e-06 | -8e-10 | -1e-09 | | 0.0002 | -1e-10 | -2e-09 | -1e-12 | 3e-06 | 2e-13 | 9e-06 | 4e-11 | 2e-09 | -3e-13 | | -3e-11 | -2e-09 | 1e-09 | -6e-13 | 2e-13 | 4e-07 | 8e-11 | 9e-10 | -1e-09 | 2e-12 | | 0.004 | 2e-08 | 3e-07 | 2e-10 | 9e-06 | 8e-11 | 0.02 | -7e-08 | -3e-07 | -2e-10 | | 5e-08 | 0.004 | 7e-08 | -7e-06 | 4e-11 | 9e-10 | -7e-08 | 0.01 | -4e-08 | 0.0002 | | 7e-08 | 3e-07 | 0.003 | -8e-10 | 2e-09 | -1e-09 | -3e-07 | -4e-08 | 0.02 | -1e-09 | | 1e-10 | 1e-05 | 1e-09 | -1e-09 | -3e-13 | 2e-12 | -2e-10 | 0.0002 | -1e-09 | 2e-06 | Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block. ** Flexible Joint Characteristics #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([1e-6*K(3,3), K(4,4), K(5,5), K(6,6); 60, 15, 15, 20]', {'Axial Stiffness [N/um]', 'Bending Stiffness [Nm/rad]', 'Bending Stiffness [Nm/rad]', 'Torsion Stiffness [Nm/rad]'}, {'*Caracteristic*', '*Value*', '*Estimation by Francois*'}, ' %0.f '); #+end_src #+RESULTS: | *Caracteristic* | *Value* | *Estimation by Francois* | |----------------------------+---------+--------------------------| | Axial Stiffness [N/um] | 119 | 60 | | Bending Stiffness [Nm/rad] | 33 | 15 | | Bending Stiffness [Nm/rad] | 33 | 15 | | Torsion Stiffness [Nm/rad] | 236 | 20 | ** Identification #+begin_src matlab m = 10; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab %% Name of the Simulink File mdl = 'flexor_ID16'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/T'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([1e-6*K(3,3), K(4,4), K(5,5), K(6,6) ; 1e-6./dcgain(G(3,3)), 1./dcgain(G(4,4)), 1./dcgain(G(5,5)), 1./dcgain(G(6,6))]', {'Axial Stiffness Dz [N/um]', 'Bending Stiffness Rx [Nm/rad]', 'Bending Stiffness Ry [Nm/rad]', 'Torsion Stiffness Rz [Nm/rad]'}, {'*Caracteristic*', '*Value*', '*Identification*'}, ' %0.f '); #+end_src #+RESULTS: | *Caracteristic* | *Value* | *Identification* | |-------------------------------+---------+------------------| | Axial Stiffness Dz [N/um] | 119 | 119 | | Bending Stiffness Rx [Nm/rad] | 33 | 34 | | Bending Stiffness Ry [Nm/rad] | 33 | 126 | | Torsion Stiffness Rz [Nm/rad] | 236 | 238 | #+begin_src matlab :exports none freqs = logspace(0, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(G(2,2), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(G(3,3), freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on plot(freqs, 180/pi*(angle(squeeze(freqresp(G(1,1), freqs, 'Hz')))), '-'); plot(freqs, 180/pi*(angle(squeeze(freqresp(G(2,2), freqs, 'Hz')))), '-'); plot(freqs, 180/pi*(angle(squeeze(freqresp(G(3,3), freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(G(4,4), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(G(5,5), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(G(6,6), freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on plot(freqs, 180/pi*(angle(squeeze(freqresp(G(4,4), freqs, 'Hz')))), '-'); plot(freqs, 180/pi*(angle(squeeze(freqresp(G(5,5), freqs, 'Hz')))), '-'); plot(freqs, 180/pi*(angle(squeeze(freqresp(G(6,6), freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src * Integral Force Feedback with Amplified Piezo ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('./src/'); addpath('./data/piezo_amplified_IFF/'); #+end_src #+begin_src matlab :exports none open('piezo_amplified_IFF'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = extractMatrix('piezo_amplified_IFF_K.txt'); M = extractMatrix('piezo_amplified_IFF_M.txt'); #+end_src Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_IFF.txt'); #+end_src ** IFF Plant The transfer function from the force actuator to the force sensor is identified and shown in Figure [[fig:piezo_amplified_iff_plant]]. #+begin_src matlab Kiff = tf(0); #+end_src #+begin_src matlab m = 0; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Kiff'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/G'], 1, 'openoutput'); io_i = io_i + 1; Gf = linearize(mdl, io); #+end_src #+begin_src matlab m = 10; #+end_src #+begin_src matlab Gfm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gf, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gfm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_plant.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:piezo_amplified_iff_plant #+caption: IFF Plant #+RESULTS: [[file:figs/piezo_amplified_iff_plant.png]] ** IFF controller The controller is defined and the loop gain is shown in Figure [[fig:piezo_amplified_iff_loop_gain]]. #+begin_src matlab Kiff = -1e12/s; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gf*Kiff, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gfm*Kiff, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf*Kiff, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm*Kiff, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_loop_gain.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:piezo_amplified_iff_loop_gain #+caption: IFF Loop Gain #+RESULTS: [[file:figs/piezo_amplified_iff_loop_gain.png]] ** Closed Loop System #+begin_src matlab m = 10; #+end_src #+begin_src matlab Kiff = -1e12/s; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/G'], 1, 'output'); io_i = io_i + 1; Giff = linearize(mdl, io); Giff.InputName = {'w', 'f', 'F'}; Giff.OutputName = {'x1', 'Fs'}; #+end_src #+begin_src matlab Kiff = tf(0); #+end_src #+begin_src matlab G = linearize(mdl, io); G.InputName = {'w', 'f', 'F'}; G.OutputName = {'x1', 'Fs'}; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 3, 1); title('$\displaystyle \frac{x_1}{w}$') hold on; plot(freqs, abs(squeeze(freqresp(G('x1', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]'); ax2 = subplot(2, 3, 2); title('$\displaystyle \frac{x_1}{f}$') hold on; plot(freqs, abs(squeeze(freqresp(G('x1', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]'); ax3 = subplot(2, 3, 3); title('$\displaystyle \frac{x_1}{F}$') hold on; plot(freqs, abs(squeeze(freqresp(G('x1', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]'); ax4 = subplot(2, 3, 4); title('$\displaystyle \frac{F_s}{w}$') hold on; plot(freqs, abs(squeeze(freqresp(G('Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/m]');xlabel('Frequency [Hz]'); ax5 = subplot(2, 3, 5); title('$\displaystyle \frac{F_s}{f}$') hold on; plot(freqs, abs(squeeze(freqresp(G('Fs', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]');xlabel('Frequency [Hz]'); ax6 = subplot(2, 3, 6); title('$\displaystyle \frac{F_s}{F}$') hold on; plot(freqs, abs(squeeze(freqresp(G('Fs', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_comp.pdf', 'width', 1500, 'height', 'full'); #+end_src #+name: fig:piezo_amplified_iff_comp #+caption: OL and CL transfer functions #+RESULTS: [[file:figs/piezo_amplified_iff_comp.png]] #+name: fig:souleille18_results #+caption: Results obtained in cite:souleille18_concep_activ_mount_space_applic [[file:figs/souleille18_results.png]]