#+TITLE: Finite Element Model with Simscape :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Amplified Piezoelectric Actuator - 3D elements ** Introduction :ignore: The idea here is to: - export a FEM of an amplified piezoelectric actuator from Ansys to Matlab - import it into a Simscape model - compare the obtained dynamics - add 10kg mass on top of the actuator and identify the dynamics - compare with results from Ansys where 10kg are directly added to the FEM ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('./src/'); addpath('./data/piezo_amplified_3d/'); #+end_src #+begin_src matlab :exports none open('piezo_amplified_3d'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = extractMatrix('piezo_amplified_3d_K.txt'); M = extractMatrix('piezo_amplified_3d_M.txt'); #+end_src Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_3d.txt'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f '); #+end_src #+RESULTS: | Total number of Nodes | 168959 | | Number of interface Nodes | 13 | | Number of Modes | 30 | | Size of M and K matrices | 108 | #+name: fig:amplified_piezo_interface_nodes #+caption: Interface Nodes for the Amplified Piezo Actuator [[file:figs/amplified_piezo_interface_nodes.png]] #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f '); #+end_src #+caption: Coordinates of the interface nodes #+RESULTS: | Node i | Node Number | x [m] | y [m] | z [m] | |--------+-------------+--------+-------+-------| | 1.0 | 168947.0 | 0.0 | 0.03 | 0.0 | | 2.0 | 168949.0 | 0.0 | -0.03 | 0.0 | | 3.0 | 168950.0 | -0.035 | 0.0 | 0.0 | | 4.0 | 168951.0 | -0.028 | 0.0 | 0.0 | | 5.0 | 168952.0 | -0.021 | 0.0 | 0.0 | | 6.0 | 168953.0 | -0.014 | 0.0 | 0.0 | | 7.0 | 168954.0 | -0.007 | 0.0 | 0.0 | | 8.0 | 168955.0 | 0.0 | 0.0 | 0.0 | | 9.0 | 168956.0 | 0.007 | 0.0 | 0.0 | | 10.0 | 168957.0 | 0.014 | 0.0 | 0.0 | | 11.0 | 168958.0 | 0.021 | 0.0 | 0.0 | | 12.0 | 168959.0 | 0.035 | 0.0 | 0.0 | | 13.0 | 168960.0 | 0.028 | 0.0 | 0.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(K(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Stiffness matrix #+RESULTS: | 300000000.0 | -30000.0 | 8000.0 | -200.0 | -30.0 | -60000.0 | 20000000.0 | -4000.0 | 500.0 | 8 | | -30000.0 | 100000000.0 | 400.0 | 30.0 | 200.0 | -1 | 4000.0 | -8000000.0 | 800.0 | 7 | | 8000.0 | 400.0 | 50000000.0 | -800000.0 | -300.0 | -40.0 | 300.0 | 100.0 | 5000000.0 | 40000.0 | | -200.0 | 30.0 | -800000.0 | 20000.0 | 5 | 1 | -10.0 | -2 | -40000.0 | -300.0 | | -30.0 | 200.0 | -300.0 | 5 | 40000.0 | 0.3 | -4 | -10.0 | 40.0 | 0.4 | | -60000.0 | -1 | -40.0 | 1 | 0.3 | 3000.0 | 7000.0 | 0.8 | -1 | 0.0003 | | 20000000.0 | 4000.0 | 300.0 | -10.0 | -4 | 7000.0 | 300000000.0 | 20000.0 | 3000.0 | 80.0 | | -4000.0 | -8000000.0 | 100.0 | -2 | -10.0 | 0.8 | 20000.0 | 100000000.0 | -4000.0 | -100.0 | | 500.0 | 800.0 | 5000000.0 | -40000.0 | 40.0 | -1 | 3000.0 | -4000.0 | 50000000.0 | 800000.0 | | 8 | 7 | 40000.0 | -300.0 | 0.4 | 0.0003 | 80.0 | -100.0 | 800000.0 | 20000.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Mass matrix #+RESULTS: | 0.03 | 2e-06 | -2e-07 | 1e-08 | 2e-08 | 0.0002 | -0.001 | 2e-07 | -8e-08 | -9e-10 | | 2e-06 | 0.02 | -5e-07 | 7e-09 | 3e-08 | 2e-08 | -3e-07 | 0.0003 | -1e-08 | 1e-10 | | -2e-07 | -5e-07 | 0.02 | -9e-05 | 4e-09 | -1e-08 | 2e-07 | -2e-08 | -0.0006 | -5e-06 | | 1e-08 | 7e-09 | -9e-05 | 1e-06 | 6e-11 | 4e-10 | -1e-09 | 3e-11 | 5e-06 | 3e-08 | | 2e-08 | 3e-08 | 4e-09 | 6e-11 | 1e-06 | 2e-10 | -2e-09 | 2e-10 | -7e-09 | -4e-11 | | 0.0002 | 2e-08 | -1e-08 | 4e-10 | 2e-10 | 2e-06 | -2e-06 | -1e-09 | -7e-10 | -9e-12 | | -0.001 | -3e-07 | 2e-07 | -1e-09 | -2e-09 | -2e-06 | 0.03 | -2e-06 | -1e-07 | -5e-09 | | 2e-07 | 0.0003 | -2e-08 | 3e-11 | 2e-10 | -1e-09 | -2e-06 | 0.02 | -8e-07 | -1e-08 | | -8e-08 | -1e-08 | -0.0006 | 5e-06 | -7e-09 | -7e-10 | -1e-07 | -8e-07 | 0.02 | 9e-05 | | -9e-10 | 1e-10 | -5e-06 | 3e-08 | -4e-11 | -9e-12 | -5e-09 | -1e-08 | 9e-05 | 1e-06 | Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block. ** Identification of the Dynamics The flexible element is imported using the =Reduced Order Flexible Solid= simscape block. To model the actuator, an =Internal Force= block is added between the nodes 3 and 12. A =Relative Motion Sensor= block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo. One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame. We first set the mass to be zero. #+begin_src matlab m = 0; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Gh = linearize(mdl, io); #+end_src Then, we add 10Kg of mass: #+begin_src matlab m = 10; #+end_src And the dynamics is identified. The two identified dynamics are compared in Figure [[fig:dynamics_act_disp_comp_mass]]. #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; Ghm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 5000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_act_disp_comp_mass.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_act_disp_comp_mass #+caption: Dynamics from $F$ to $d$ without a payload and with a 10kg payload #+RESULTS: [[file:figs/dynamics_act_disp_comp_mass.png]] ** Comparison with Ansys Let's import the results from an Harmonic response analysis in Ansys. #+begin_src matlab Gresp0 = readtable('FEA_HarmResponse_00kg.txt'); Gresp10 = readtable('FEA_HarmResponse_10kg.txt'); #+end_src The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure [[fig:dynamics_force_disp_comp_anasys]]. #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',1) plot(Gresp0{:, 2}, 1e-3*Gresp0{:, 3}, '--'); set(gca,'ColorOrderIndex',2) plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); set(gca,'ColorOrderIndex',2) plot(Gresp0{:, 2}, 1e-3*Gresp10{:, 3}, '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$, Simscape'); set(gca,'ColorOrderIndex',1) plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp0{:, 4}), '--', ... 'DisplayName', '$m = 0kg$, Ansys'); set(gca,'ColorOrderIndex',2) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$, Simscape'); set(gca,'ColorOrderIndex',2) plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp10{:, 4}), '--', ... 'DisplayName', '$m = 10kg$, Ansys'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; legend('location', 'southwest'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_force_disp_comp_anasys.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_force_disp_comp_anasys #+caption: Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys #+RESULTS: [[file:figs/dynamics_force_disp_comp_anasys.png]] ** Force Sensor The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13. The obtained dynamics is shown in Figure [[fig:dynamics_force_force_sensor_comp_mass]]. #+begin_src matlab m = 0; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gf = linearize(mdl, io); #+end_src #+begin_src matlab m = 10; #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'piezo_amplified_3d'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; Gfm = linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; ax1 = subplot(2,1,1); hold on; plot(freqs, abs(squeeze(freqresp(Gf, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gfm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = subplot(2,1,2); hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/dynamics_force_force_sensor_comp_mass.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:dynamics_force_force_sensor_comp_mass #+caption: Dynamics from $F$ to $F_m$ for $m=0$ and $m = 10kg$ #+RESULTS: [[file:figs/dynamics_force_force_sensor_comp_mass.png]]