
A brief and practical introduction to H∞
Control

Dehaeze Thomas

December 4, 2020

Contents

1 Introduction to Model Based Control 4
1.1 Model Based Control - Methodology . 4
1.2 From Classical Control to Robust Control . 5
1.3 Example System . 6

2 Classical Open Loop Shaping 9
2.1 Introduction to Loop Shaping . 9
2.2 Example of Manual Open Loop Shaping . 10
2.3 H∞ Loop Shaping Synthesis . 11
2.4 Example of the H∞ Loop Shaping Synthesis . 12

3 A first Step into the H∞ world 16
3.1 The H∞ Norm . 16
3.2 H∞ Synthesis . 17
3.3 The Generalized Plant . 18
3.4 The H∞ Synthesis applied on the Generalized plant . 18
3.5 From a Classical Feedback Architecture to a Generalized Plant 19

4 Modern Interpretation of Control Specifications 22
4.1 Closed Loop Transfer Functions and the Gang of Four 22
4.2 The Sensitivity Function . 24
4.3 Robustness: Module Margin . 26
4.4 Summary of typical specification and associated wanted shaping 30

5 H∞ Shaping of closed-loop transfer functions 31
5.1 How to Shape closed-loop transfer function? Using Weighting Functions! 31
5.2 Design of Weighting Functions . 33
5.3 Shaping the Sensitivity Function . 35
5.4 Shaping multiple closed-loop transfer functions - Limitations 38

6 Mixed-Sensitivity H∞ Control - Example 46
6.1 Control Problem . 46
6.2 Control Design Procedure . 47
6.3 Modern Interpretation of control specifications . 49
6.4 Step 1 - Shaping of S . 51
6.5 Step 2 - Shaping of GS . 55
6.6 Step 3 - Shaping of T . 57
6.7 Conclusion and Discussion . 60

7 Conclusion 62

2

Introduction

The purpose of this document is to give a practical introduction to the wonderful world ofH∞ Control.

No attend is made to provide an exhaustive treatment of the subject. H∞ Control is a very broad topic
and entire books are written on it. Therefore, for more advanced discussion, please have a look at the
recommended references at the bottom of this document.

When possible, Matlab scripts used for the example/exercises are provided such that you can easily test
them on your computer.

The general structure of this document is as follows:

• A short introduction to model based control is given in Section 1

• Classical open loop shaping method is presented in Section 2. It is also shown that H∞ synthesis
can be used for open loop shaping

• Important concepts indispensable for H∞ control such as the H∞ norm and the generalized plant
are introduced in Section 3

• A very important step in H∞ control is to express the control specifications (performances, ro-
bustness, etc.) as an H∞ optimization problem. Such procedure is described in Section 4

• One of the most useful use of the H∞ control is the shaping of closed-loop transfer functions.
Such technique is presented in Section 5

• Finally, complete examples of the use ofH∞ Control for practical problems are provided in Section
6

3

1 Introduction to Model Based Control

1.1 Model Based Control - Methodology

The typical methodology forModel Based Control techniques is schematically shown in Figure 1.1.

It consists of three steps:

1. Identification or modeling: a mathematical model G(s) representing the plant dynamics is
obtained

2. Translate the specifications into mathematical criteria:

• Specifications: Response Time, Noise Rejection, Maximum input amplitude, Robustness, . . .

• Mathematical Criteria: Cost Function, Shape of transfer function, Phase/Gain margin, Roll-
Off, . . .

3. Synthesis: research of a controller K(s) that satisfies the specifications for the model of the
system

+
−

Controller Plant

Synthesis Model

r ε u y

13

2
Specifications

Figure 1.1: Typical Methodoly for Model Based Control

In this document, we will suppose a model of the plant is available (step 1 already performed), and we
will focus on steps 2 and 3.

In Section 2, steps 2 and 3 will be described for a control techniques called classical (open-)loop
shaping.

Then, steps 2 and 3 for the H∞ Loop Shaping of closed-loop transfer functions will be discussed in
Sections 4, 5 and 6.

4

1.2 From Classical Control to Robust Control

Many different model based control techniques have been developed since the birth of classical control
theory in the ’30s.

Classical control methods were developed starting from 1930 based on tools such as the Laplace and
Fourier transforms. It was then natural to study systems in the frequency domain using tools such
as the Bode and Nyquist plots. Controllers were manually tuned to optimize criteria such as control
bandwidth, gain and phase margins.

The ’60s saw the development of control techniques based on a state-space. Linear algebra and matrices
were used instead of the frequency domain tool of the class control theory. This allows multi-inputs
multi-outputs systems to be easily treated. Kalman introduced the well known Kalman estimator as
well the notion of optimality by minimizing quadratic cost functions. This set of developments is loosely
termed Modern Control theory.

By the 1980’s, modern control theory was shown to have some robustness issues and to lack the intuitive
tools that the classical control methods were offering. This led to a new control theory called Robust
control that blends the best features of classical and modern techniques. This robust control theory is
the subject of this document.

The three presented control methods are compared in Table 1.1.

Note that in parallel, there have been numerous other developments, including non-linear control,
adaptive control, machine-learning control just to name a few.

Table 1.1: Table summurazing the main differences between classical, modern and robust control

Classical Control Modern Control Robust Control

Date 1930- 1960- 1980-

Tools Transfer Functions State Space formulation Systems/Signal Norms
Nyquist, Bode Plots Riccati Equations Closed Loop TF

Root Locus Kalman Filters Closed Loop Shaping
Phase/Gain margins Weighting Functions
Open Loop Shaping Disk margin

Controllers P, PI, PID Full State Feedback General Control Conf.
Leads, Lags LQG, LQR

Advantages Study Stability Automatic Synthesis Automatic Synthesis
Simple MIMO MIMO
Natural Optimization Problem Optimization Problem

Guaranteed Robustness

Disadvant. Manual Method No Guaranteed Robustness Requires knowledge of tools
Only SISO Rejection of Pert. Need good model of the system

No input usage lim.

5

1.3 Example System

Throughout this document, multiple examples and practical application of presented control strategies
will be provided. Most of them will be applied on a physical system presented in this section.

This system is shown in Figure 1.2. It could represent an active suspension stage supporting a payload.
The inertial motion of the payload is measured using an inertial sensor and this is feedback to a force
actuator. Such system could be used to actively isolate the payload (disturbance rejection problem) or
to make it follow a trajectory (tracking problem).

The notations used on Figure 1.2 are listed and described in Table 1.2.

m

k c

d

+−

K(s)

y

ε

r

u

Figure 1.2: Test System consisting of a payload with a mass m on top of an active system with a
stiffness k, damping c and an actuator. A feedback controller K(s) is added to position /
isolate the payload.

Table 1.2: Example system variables

Notation Description Value Unit

m Payload’s mass to position / isolate 10 [kg]
k Stiffness of the suspension system 106 [N/m]
c Damping coefficient of the suspension system 400 [N/(m/s)]
y Payload absolute displacement (measured by an inertial

sensor)
[m]

d Ground displacement, it acts as a disturbance [m]
u Actuator force [N]
r Wanted position of the mass (the reference) [m]

ε = r − y Position error [m]
K Feedback controller to be designed [N/m]

Exercice

Derive the following open-loop transfer functions:

G(s) =
y

u
(1.1)

Gd(s) =
y

d
(1.2)

Hint

You can follow this generic procedure:

6

1. List all applied forces ot the mass: Actuator force, Stiffness force (Hooke’s law), . . .

2. Apply the Newton’s Second Law on the payload

mÿ = ΣF

3. Transform the differential equations into the Laplace domain:

d ·
dt
⇔ · × s

4. Write y(s) as a function of u(s) and w(s)

Results

G(s) =
1

ms2 + cs+ k
(1.3)

Gd(s) =
cs+ k

ms2 + cs+ k
(1.4)

Having obtained G(s) and Gd(s), we can transform the system shown in Figure 1.2 into a classical
feedback architecture as shown in Figure 2.1.

+
−

K(s) G(s) +

Gd(s)

r ε u

d

y

Figure 1.3: Block diagram corresponding to the example system of Figure 1.2

Let’s define the system parameters on Matlab.

Matlab
1 k = 1e6; % Stiffness [N/m]
2 c = 4e2; % Damping [N/(m/s)]
3 m = 10; % Mass [kg]

And now the system dynamics G(s) and Gd(s).

Matlab
4 G = 1/(m*s^2 + c*s + k); % Plant
5 Gd = (c*s + k)/(m*s^2 + c*s + k); % Disturbance

The Bode plots of G(s) and Gd(s) are shown in Figures 1.4 and 1.5.

7

10!8

10!6

M
a
g
n
it
u
d
e

100 101 102 103

Frequency [Hz]

-270

-180

-90

0

90

P
h
a
se

[d
eg

]

Figure 1.4: Bode plot of the plant G(s)

100 101 102 103

Frequency [Hz]

10!2

10!1

100

101

M
ag

n
it
u
d
e

Figure 1.5: Magnitude of the disturbance transfer function Gd(s)

8

2 Classical Open Loop Shaping

After an introduction to classical Loop Shaping in Section 2.1, a practical example is given in Section
2.2. Such Loop Shaping is usually performed manually with tools coming from the classical control
theory.

However, the H∞ synthesis can be used to automate the Loop Shaping process. This is presented in
Section 2.3 and applied on the same example in Section 2.4.

2.1 Introduction to Loop Shaping

Definition

Loop Shaping refers to a control design procedure that involves explicitly shaping the magni-
tude of the Loop Transfer Function L(s).

Definition

The Loop Gain (or Loop transfer function) L(s) usually refers to as the product of the controller
and the plant (see Figure 2.1):

L(s) = G(s) ·K(s) (2.1)

Its name comes from the fact that this is actually the “gain around the loop”.

+
−

K(s)

Controller

G(s)

Plant

r ε u y

L(s)

Figure 2.1: Classical Feedback Architecture

This synthesis method is one of main way controllers are design in the classical control theory. It is
widely used and generally successful as many characteristics of the closed-loop system depend on the
shape of the open loop gain L(s) such as:

• Good Tracking: L large

• Good disturbance rejection: L large

• Attenuation of measurement noise on plant output: L small

9

• Small magnitude of input signal: L small

• Nominal stability: L small (RHP zeros and time delays)

• Robust stability: L small (neglected dynamics)

The shaping of the Loop Gain is done manually by combining several leads, lags, notches. . . This
process is very much simplified by the fact that the loop gain L(s) depends linearly on K(s) (2.1). A
typical wanted Loop Shape is shown in Figure 2.2. Another interesting Loop shape called “Bode Step”
is described in [3].

ω
∠L(jω)

ω

|L(jω)|
−2

−1

−2
Ref. tracking

Dist. rejection

Noise attenuation

ωc

Bandwidth

Phase Margin

−π

Figure 2.2: Typical Wanted Shape for the Loop Gain L(s)

The shaping of closed-loop transfer functions is obviously not as simple as they don’t depend linearly
on K(s). But this is were the H∞ Synthesis will be useful! More details on that in Sections 4 and 5.

2.2 Example of Manual Open Loop Shaping

Example

Let’s take our example system described in Section 1.3 and design a controller using the Open-
Loop shaping synthesis approach. The specifications are:

1. Disturbance rejection: Highest possible rejection below 1Hz

2. Positioning speed: Bandwidth of approximately 10Hz

3. Noise attenuation: Roll-off of -40dB/decade past 30Hz

4. Robustness: Gain margin > 3dB and Phase margin > 30 deg

10

Exercice

Using SISOTOOL , design a controller that fulfills the specifications.

Matlab
sisotool(G)

Hint

You can follow this procedure:

1. In order to have good disturbance rejection at low frequency, add a simple or double
integrator

2. In terms of the loop gain, the bandwidth can be defined at the frequency ωc where |l(jωc)|
first crosses 1 from above. Therefore, adjust the gain such that L(jω) crosses 1 at around
10Hz

3. The roll-off at high frequency for noise attenuation should already be good enough. If not,
add a low pass filter

4. Add a Lead centered around the crossover frequency (10 Hz) and tune it such that sufficient
phase margin is added. Verify that the gain margin is good enough.

Let’s say we came up with the following controller.
Matlab

K = 14e8 * ... % Gain
1/(s^2) * ... % Double Integrator
1/(1 + s/2/pi/40) * ... % Low Pass Filter
(1 + s/(2*pi*10/sqrt(8)))/(1 + s/(2*pi*10*sqrt(8))); % Lead

The bode plot of the Loop Gain is shown in Figure 2.3 and we can verify that we have the wanted
stability margins using the margin command:

Matlab
[Gm, Pm, ~, Wc] = margin(G*K)

Requirements Manual Method

Gain Margin > 3 [dB] 3.1
Phase Margin > 30 [deg] 35.4
Crossover ≈ 10 [Hz] 10.1

2.3 H∞ Loop Shaping Synthesis

The synthesis of controllers based on the Loop Shaping method can be automated using the H∞
Synthesis.

Using Matlab, it can be easily performed using the loopsyn command:

11

10!4

10!2

100

M
a
g
n
it
u
d
e

100 101 102 103

Frequency [Hz]

-360

-270

-180

-90

0

P
h
a
se

[d
eg

]

Figure 2.3: Bode Plot of the obtained Loop Gain L(s) = G(s)K(s)

Matlab
K = loopsyn(G, Lw);

where:

• G is the (LTI) plant

• Lw is the wanted loop shape

• K is the synthesize controller

See Also

Matlab documentation of loopsyn (link).

Therefore, by just providing the wanted loop shape and the plant model, theH∞ Loop Shaping synthesis
generates a stabilizing controller such that the obtained loop gain L(s) matches the specified one with
an accuracy γ.

Even though we will not go into details and explain how such synthesis is working, an example is
provided in the next section.

2.4 Example of the H∞ Loop Shaping Synthesis

To apply the H∞ Loop Shaping Synthesis, the wanted shape of the loop gain should be determined
from the specifications. This is summarized in Table 2.1.

Such shape corresponds to the typical wanted Loop gain Shape shown in Figure 2.2.

12

https://www.mathworks.com/help/robust/ref/loopsyn.html

Table 2.1: Wanted Loop Shape corresponding to each specification

Specification Corresponding Loop Shape

Dist. Rej. Highest possible rejection below 1Hz Slope of -40dB/dec at low frequency
Pos. Speed Bandwidth of approximately 10Hz L crosses 1 at 10Hz
Noise Att. Roll-off of -40dB/decade past 30Hz Roll-off of -40dB/decade past 30Hz
Robustness ∆G > 3dB, ∆φ > 30o Slope of -20dB/decade near the crossover

Then, a (stable, minimum phase) transfer function Lw(s) should be created that has the same gain as
the wanted shape of the Loop gain. For this example, a double integrator and a lead centered on 10Hz
are used. Then the gain is adjusted such that the |Lw(j2π10)| = 1.

Using Matlab, we have:

Matlab
Lw = 2.3e3 * ...

1/(s^2) * ... % Double Integrator
(1 + s/(2*pi*10/sqrt(3)))/(1 + s/(2*pi*10*sqrt(3))); % Lead

The H∞ open loop shaping synthesis is then performed using the loopsyn command:

Matlab
[K, ~, GAM] = loopsyn(G, Lw);

The obtained Loop Gain is shown in Figure 2.4 and matches the specified one by a factor γ ≈ 2.

Important

When using the H∞ Synthesis, it is usually recommended to analyze the obtained controller.
This is usually done by breaking down the controller into simple elements such as low pass filters,
high pass filters, notches, leads, etc.

Let’s briefly analyze the obtained controller which bode plot is shown in Figure 2.5:

• two integrators are used at low frequency to have the wanted low frequency high gain

• a lead is added centered with the crossover frequency to increase the phase margin

• a notch is added at the resonance of the plant to increase the gain margin (this is very typical of
H∞ controllers, and can be an issue, more info on that latter)

Let’s finally compare the obtained stability margins of the H∞ controller and of the manually developed
controller in Table 2.2.

13

10!4

10!2

100

102

M
ag
n
it
u
d
e

L(s)
Lw(s)
Lw(s)=., Lw(s) " .

100 101 102 103

Frequency [Hz]

-360

-270

-180

-90

0

P
h
as
e
[d
eg
]

Figure 2.4: Obtained Open Loop Gain L(s) = G(s)K(s) and comparison with the wanted Loop gain
Lw

104

106

108

M
ag

n
it
u
d
e

100 101 102 103

Frequency [Hz]

-180

-90

0

90

P
h
as

e
[d

eg
]

Figure 2.5: Obtained controller K using the open-loop H∞ shaping

14

Table 2.2: Comparison of the characteristics obtained with the two methods

Specifications Manual Method H∞ Method

Gain Margin > 3 [dB] 3.1 31.7
Phase Margin > 30 [deg] 35.4 54.7
Crossover ≈ 10 [Hz] 10.1 9.9

15

3 A first Step into the H∞ world

In this section, the H∞ Synthesis method, which is based on the optimization of the H∞ norm of
transfer functions, is introduced.

After the H∞ norm is defined in Section 3.1, the H∞ synthesis procedure is described in Section 3.2
.

The generalized plant, a very useful tool to describe a control problem, is presented in Section 3.3. The
H∞ is then applied to this generalized plant in Section 3.4.

Finally, an example showing how to convert a typical feedback control architecture into a generalized
plant is given in Section 3.5.

3.1 The H∞ Norm

Definition

The H∞ norm of a multi-input multi-output system G(s) is defined as the peak of the maximum
singular value of its frequency response

‖G(s)‖∞ = max
ω

σ̄
(
G(jω)

)
(3.1)

For a single-input single-output system G(s), it is simply the peak value of |G(jω)| as a function
of frequency:

‖G(s)‖∞ = max
ω
|G(jω)| (3.2)

Example

Let’s compute the H∞ norm of our test plant G(s) using the hinfnorm function:

Matlab
hinfnorm(G)

Results
7.9216e-06

We can see in Figure 3.1 that indeed, the H∞ norm of G(s) does corresponds to the peak value
of |G(jω)|.

16

100 101 102 103

Frequency [Hz]

10!8

10!7

10!6

10!5

M
a
g
n
it
u
d
e

jG
(j

!
)j

kGk1

Figure 3.1: Example of the H∞ norm of a SISO system

3.2 H∞ Synthesis

Definition

The H∞ synthesis is a method that uses an algorithm (LMI optimization, Riccati equation)
to find a controller that stabilizes the system and that minimizes the H∞ norms of defined
transfer functions.

Why optimizing the H∞ norm of transfer functions is a pertinent choice will become clear when we will
translate the typical control specifications into the H∞ norm of transfer functions in Section 4.

Important

Then applying the H∞ synthesis to a plant, the engineer work usually consists of the following
steps:

1. Write the problem as standard H∞ problem using the generalized plant (described in the
next section)

2. Translate the specifications as H∞ norms of transfer functions (Section 4)

3. Make the synthesis and analyze the obtained controller

As the H∞ synthesis usually gives very high order controllers, an additional step that reduces
the controller order is sometimes required for practical implementation.

Note that there are many ways to use the H∞ Synthesis:

• Traditional H∞ Synthesis (hinfsyn doc)

17

https://www.mathworks.com/help/robust/ref/hinfsyn.html

• Open Loop Shaping H∞ Synthesis (loopsyn doc)

• Mixed Sensitivity Loop Shaping (mixsyn doc)

• Fixed-Structure H∞ Synthesis (hinfstruct doc)

• Signal Based H∞ Synthesis, and many more. . .

3.3 The Generalized Plant

The first step when applying the H∞ synthesis is usually to write the problem as a standard H∞
problem. This consist of deriving the Generalized Plant for the current problem.

The generalized plant, usually noted P (s), is shown in Figure 3.2. It has two sets of inputs [w, u] and
two sets of outputs [z v] such that: [

z
v

]
= P

[
w
u

]
(3.3)

The meaning of these inputs and outputs are summarized in Table 3.1.

A practical example about how to derive the generalized plant for a classical control problem is given
in Section 3.5.

Important

P

Generalized Plant
w

u

z

v

Figure 3.2: Inputs and Outputs of the generalized Plant

Table 3.1: Notations for the general configuration

Notation Meaning

P Generalized plant model
w Exogenous inputs: references, disturbances, noises
z Exogenous outputs: signals to be minimized
v Controller inputs: measurements
u Control signals

3.4 The H∞ Synthesis applied on the Generalized plant

Once the generalized plant is obtained, the H∞ synthesis problem can be stated as follows:

18

https://www.mathworks.com/help/robust/ref/loopsyn.html
https://www.mathworks.com/help/robust/ref/lti.mixsyn.html
https://www.mathworks.com/help/robust/ref/lti.hinfstruct.html

Important

H∞ Synthesis applied on the generalized plant

Find a stabilizing controller K that, using the sensed outputs v, generates control signals u such
that the H∞ norm of the closed-loop transfer function from w to z is minimized.
After K is found, the system is robustified by adjusting the response around the unity gain
frequency to increase stability margins.
The obtained controller K and the generalized plant are connected as shown in Figure 3.3.

P

K

(weighted)
exogenous inputs

w

control signals
u

(weighted)
exogenous outputs
z

sensed output
v

Figure 3.3: General Control Configuration

Using Matlab, the H∞ Synthesis applied on a Generalized plant can be applied using the hinfsyn
command (documentation):

Matlab
K = hinfsyn(P, nmeas, ncont);

where:

• P is the generalized plant transfer function matrix

• nmeas is the number of sensed output (size of v)

• ncont is the number of control signals (size of u)

• K obtained controller (of size ncont x nmeas) that minimizes the H∞ norm from w to z.

Note that the general control configure of Figure 3.3, as its name implies, is quite general and can
represent feedback control as well as feedforward control architectures.

3.5 From a Classical Feedback Architecture to a Generalized
Plant

The procedure to convert a typical control architecture as the one shown in Figure 3.4 to a generalized
Plant is as follows:

19

https://www.mathworks.com/help/robust/ref/hinfsyn.html

1. Define signals of the generalized plant: w, z, u and v

2. Remove K and rearrange the inputs and outputs to match the generalized configuration shown
in Figure 3.2

Exercice

Consider the feedback control architecture shown in Figure 3.4. Suppose we want to design K
using the general H∞ synthesis, and suppose the signals to be minimized are the control input
u and the tracking error ε.

1. Convert the control architecture to a generalized configuration

2. Compute the transfer function matrix of the generalized plant P using Matlab as a function
or K and G

+
−

K(s) G(s)r ε u y

Figure 3.4: Classical Feedback Control Architecture (Tracking)

Hint

First, define the signals of the generalized plant:

• Exogenous inputs: w = r

• Signals to be minimized: Usually, we want to minimize the tracking errors ε and the control
signal u: z = [ε, u]

• Controller inputs: this is the signal at the input of the controller: v = ε

• Controller outputs: signal generated by the controller: u

Then, Remove K and rearrange the inputs and outputs as in Figure 3.2.

Anwser

The obtained generalized plant shown in Figure 3.5.

Generalized Plant P (s)

G(s) +−

K(s)

ε

u

vu

w = r
z

Figure 3.5: Generalized plant of the Classical Feedback Control Architecture (Tracking)

Using Matlab, the generalized plant can be defined as follows:

20

Matlab
P = [1 -G;

0 1;
1 -G]

P.InputName = {'w', 'u'};
P.OutputName = {'e', 'u', 'v'};

21

4 Modern Interpretation of Control
Specifications

As shown in Section 2, the loop gain L(s) = G(s)K(s) is a useful and easy tool when manually designing
controllers. This is mainly due to the fact that L(s) is very easy to shape as it depends linearly on
K(s). Moreover, important quantities such as the stability margins and the control bandwidth can be
estimated from the shape/phase of L(s).

However, the loop gain L(s) does not directly give the performances of the closed-loop system. As a
matter of fact, the behavior of the closed-loop system by the closed-loop transfer functions. These are
derived of a typical feedback architecture functions in Section 4.1.

The modern interpretation of control specifications then consists of determining the required shape of
the closed-loop transfer functions such that the system behavior corresponds to the requirements.
Once this is done, the H∞ synthesis can be used to generate a controller that will shape the closed-loop
transfer function as specified.. This method is presented in Section 5.

One of the most important closed-loop transfer function is called the sensitivity function. Its link
with the closed-loop behavior of the feedback system is studied in Section 4.2.

The robustness (stability margins) of the system can also be linked to the shape of the sensitivity
function with the use of the module margin (Section 4.3).

Links between typical control specifications and shapes of the closed-loop transfer functions are sum-
marized in Section 4.4.

4.1 Closed Loop Transfer Functions and the Gang of Four

Consider the typical feedback system shown in Figure 4.1.

The behavior (performances) of this feedback system is determined by the closed-loop transfer functions
from the inputs (r, d and n) to the important signals such as ε, u and y.

Depending on the specification, different closed-loop transfer functions do matter. These are summa-
rized in Table 4.1.

Exercice

For the feedback system in Figure 4.1, write the output signals [ε, u, y] as a function of the
systems K(s), G(s) and the input signals [r, d, n].

22

+
−

K(s) + G(s)

+

r ε
d

u y

n

Figure 4.1: Simple Feedback Architecture with r the reference signal, ε the tracking error, d a distur-
bance acting at the plant input u, y is the output signal and n the measurement noise

Table 4.1: Typical Specification and associated closed-loop transfer function

Specification CL Transfer Function

Reference Tracking From r to ε
Disturbance Rejection From d to y
Measurement Noise Filtering From n to y
Small Command Amplitude From n, r, d to u
Stability All
Robustness (stability margins) Module margin (see Section 4.3)

Hint

Take one of the output (e.g. y), and write it as a function of the inputs [d, r, n] going step by
step around the loop:

y = Gu

= G(d+Kε)

= G
(
d+K(r − n− y)

)
= Gd+GKr −GKn−GKy

Isolate y at the right hand side, and finally obtain:

y =
GK

1 +GK
r +

G

1 +GK
d− GK

1 +GK
n

Do the same procedure for u and ε

Answer

The following equations should be obtained:

y =
GK

1 +GK
r +

G

1 +GK
d− GK

1 +GK
n (4.1)

ε =
1

1 +GK
r − G

1 +GK
d− G

1 +GK
n (4.2)

u =
K

1 +GK
r − 1

1 +GK
d− K

1 +GK
n (4.3)

23

Important

We can see that they are 4 different closed-loop transfer functions describing the behavior of the
feedback system in Figure 4.1. These called the Gang of Four:

S =
1

1 +GK
, the sensitivity function (4.4)

T =
GK

1 +GK
, the complementary sensitivity function (4.5)

GS =
G

1 +GK
, the load disturbance sensitivity function (4.6)

KS =
K

1 +GK
, the noise sensitivity function (4.7)

See Also

If a feedforward controller is included, a Gang of Six transfer functions can be defined. More
on that in this short video.

The behavior of the feedback system in Figure 4.1 is fully described by the following set of equations:

ε = Sr −GSd−GSn (4.8)
y = Tr +GSd− Tn (4.9)
u = KSr − Sd−KSn (4.10)

Thus, for reference tracking, we have to shape the closed-loop transfer function from r to ε, that is the
sensitivity function S(s). Similarly, to reduce the effect of measurement noise n on the output y, we
have to act on the complementary sensitivity function T (s).

4.2 The Sensitivity Function

The sensitivity function is indisputably the most important closed-loop transfer function of a feedback
system. In this section, we will see how the shape of the sensitivity function will impact the performances
of the closed-loop system.

Suppose we have developed a “reference” controller Kr(s) and made three small changes to obtained
three controllers K1(s), K2(s) and K3(s). The obtained sensitivity functions for these four controllers
are shown in Figure 4.2 and the corresponding step responses are shown in Figure 4.3.

The comparison of the sensitivity functions shapes and their effect on the step response is summarized
in Table 4.2.

Definition

Closed-Loop Bandwidth The closed-loop bandwidth ωb is the frequency where |S(jω)| first
crosses 1/

√
2 = −3dB from below.

In general, a large bandwidth corresponds to a faster rise time.

24

https://www.youtube.com/watch?v=b_8v8scghh8

Table 4.2: Comparison of the sensitivity function shape and the corresponding step response for the
three controller variations

Controller Sensitivity Function Shape Change of the Step Response

K1(s) Larger bandwidth ωb Faster rise time
K2(s) Larger peak value ‖S‖∞ Large overshoot and oscillations
K3(s) Larger low frequency gain |S(j · 0)| Larger static error

10!2 10!1 100 101 102

Frquency [Hz]

10!3

10!2

10!1

100

S
en

si
ti
v
it
y

M
a
g
n
it
u
d
e

K1(s)
K2(s)
K3(s)
Kr(s)

Figure 4.2: Sensitivity function magnitude |S(jω)| corresponding to the reference controller Kr(s) and
the three modified controllers Ki(s)

0 1 2 3 4 5

Time [s]

0

0.5

1

1.5

S
te

p
R

es
p
o
n
se

K1(s)
K2(s)
K3(s)
Kr(s)

Figure 4.3: Step response (response from r to y) for the different controllers

25

Important

From the simple analysis above, we can draw a first estimation of the wanted shape for the
sensitivity function (Figure 4.4):

• A small magnitude at low frequency to make the static errors small

• A wanted minimum closed-loop bandwidth in order to have fast rise time and good rejection
of perturbations

• A small peak value (small H∞ norm) in order to limit large overshoot and oscillations.
This generally means higher robustness. This will become clear in the next section about
the module margin.

10−2 10−1 100 101 102 103 104

40

20

0

−20

−40

−60

−80
Small static error

Speed

Robustness

Frequency [Hz]

M
ag

ni
tu

de
[d

B]

Figure 4.4: Typical wanted shape of the Sensitivity transfer function

4.3 Robustness: Module Margin

Let’s start this section by an example demonstrating why the phase and gain margins might not be
good indicators of robustness. Will follow a discussion about the module margin, a robustness indicator
that can be linked to the H∞ norm of S and that will prove to be very useful.

Example

Consider the following plant Gt(s):

Matlab
w0 = 2*pi*100;
xi = 0.1;
k = 1e7;

Gt = 1/k*(s/w0/4 + 1)/(s^2/w0^2 + 2*xi*s/w0 + 1);

Let’s say we have designed a controller Kt(s) that gives the loop gain shown in Figure 4.5.

Matlab
Kt = 1.2e6*(s + w0)/s;

The following characteristics can be determined from the Loop gain in Figure 4.5:

26

• Control bandwidth of ≈ 10Hz

• Infinite gain margin (the phase of the loop-gain never reaches −180o)

• More than 90o of phase margin

This clearly indicate very good robustness of the closed-loop system! Or does it? Let’s find out.

10!2

100

M
a
g
n
it
u
d
e

L(s)

100 101 102 103

Frequency [Hz]

-180

-90

0

P
h
a
se

[d
eg

]

Figure 4.5: Bode plot of the obtained Loop Gain L(s)

Now let’s suppose the controller is implemented in practice, and the “real” plant Gr(s) as a
slightly lower damping factor than the one estimated for the model:

Matlab
xi = 0.03;

The obtained “real” loop gain is shown in Figure 4.6. At a frequency little bit above 100Hz, the
phase of the loop gain reaches -180 degrees while its magnitude is more than one which indicates
instability.
It is confirmed by checking the stability of the closed loop system:

Matlab
isstable(feedback(Gr,K))

Results
0

27

10!2

100

M
a
g
n
it
u
d
e

L(s)
Lr(s)

100 101 102 103

Frequency [Hz]

-180

-90

0

P
h
a
se

[d
eg

]

Figure 4.6: Bode plots of L(s) (loop gain corresponding the nominal plant) and Lr(s) (loop
gain corresponding to the real plant)

Therefore, even a small change of the plant parameter renders the system unstable even though
both the gain margin and the phase margin for the nominal plant are excellent.
This is due to the fact that the gain and phase margin are robustness indicators corresponding
a pure change or gain or a pure change of phase but not a combination of both.

Let’s now determine a new robustness indicator based on the Nyquist Stability Criteria.

Definition

Nyquist Stability Criteria (for stable systems) If the open-loop transfer function L(s) is stable,
then the closed-loop system will be unstable for any encirclement of the point −1 on the
Nyquist plot.

Nyquist Plot The Nyquist plot shows the evolution of L(jω) in the complex plane from ω =
0→∞.

See Also

For more information about the general Nyquist Stability Criteria, you may want to look at this
video.

From the Nyquist stability criteria, it is clear that we want L(jω) to be as far as possible from the −1
point (called the unstable point) in the complex plane. This minimum distance is called the module
margin.

Definition

Module Margin The Module Margin ∆M is defined as the minimum distance between the
point −1 and the loop gain L(jω) in the complex plane.

28

https://www.youtube.com/watch?v=sof3meN96MA

Example

A typical Nyquist plot is shown in Figure 4.7. The gain, phase and module margins are graphi-
cally shown to have an idea of what they represent.

-2 -1.5 -1 -0.5 0 0.5 1

Real Axis

-1

-0.5

0

0.5

1

Im
a
g
in

a
ry

A
x
is

"G = 2:0
"? = 49:5o

"M = 0:4
L(j!)

Figure 4.7: Nyquist plot with visual indication of the Gain margin ∆G, Phase margin ∆φ and
Module margin ∆M

As expected from Figure 4.7, there is a close relationship between the module margin and the gain and
phase margins. We can indeed show that for a given value of the module margin ∆M , we have:

∆G ≥ 1

1−∆M
; ∆φ ≥ ∆M (4.11)

Let’s now try to express the Module margin ∆M as an H∞ norm of a closed-loop transfer function:

∆M = minimum distance between L(jω) and point (−1)

= min
ω
|L(jω)− (−1)|

= min
ω
|1 + L(jω)|

=
1

maxω
1

|1+L(jω)|

=
1

maxω

∣∣∣ 1
1+G(jω)K(jω)

∣∣∣
=

1

‖S‖∞

Therefore, for a given H∞ norm of S (‖S‖∞ = MS), we have:

∆G ≥ MS

MS − 1
; ∆φ ≥ 1

MS
(4.12)

29

Important

The H∞ norm of the sensitivity function ‖S‖∞ is a measure of the Module margin ∆M and
therefore an indicator of the system robustness.

∆M =
1

‖S‖∞
(4.13)

The wanted robustness of the closed-loop system can be specified by setting a maximum value
on ‖S‖∞.

Note that this is why large peak value of |S(jω)| usually indicate robustness problems. And we now
understand why setting an upper bound on the magnitude of S is generally a good idea.

Example

Typical, we require ‖S‖∞ < 2(6dB) which implies ∆G ≥ 2 and ∆φ ≥ 29o

See Also

To learn more about module/disk margin, you can check out this video.

4.4 Summary of typical specification and associated wanted
shaping

Table 4.3: Typical Specifications and corresponding wanted norms of open and closed loop tansfer
functions

Open-Loop Shaping Closed-Loop Shaping

Reference Tracking L large S small
Disturbance Rejection L large GS small
Measurement Noise Filtering L small T small
Small Command Amplitude K and L small KS small
Robustness Phase/Gain margins Module margin: ‖S‖∞

small

30

https://www.youtube.com/watch?v=XazdN6eZF80

5 H∞ Shaping of closed-loop transfer
functions

In the previous sections, we have seen that the performances of the system depends on the shape of the
closed-loop transfer function. Therefore, the synthesis problem is to design K(s) such that closed-loop
system is stable and such that the closed-loop transfer functions such as S, KS and T are shaped as
wanted. This is clearly not simple as these closed-loop transfer functions does not depend linearly on
K. But don’t worry, the H∞ synthesis will do this job for us!

To do so, weighting functions are included in the generalized plant and the H∞ synthesis applied on
the weighted generalized plant. Such procedure is presented in Section 5.1.

Some advice on the design of weighting functions are given in Section 5.2.

An example of the H∞ shaping of the sensitivity function is studied in Section 5.3.

Multiple closed-loop transfer functions can be shaped at the same time. Such synthesis is usually called
Mixed-sensitivity Loop Shaping and is one of the most powerful tool of the robust control theory.
Some insight on the use and limitations of such techniques are given in Section 5.4.

5.1 How to Shape closed-loop transfer function? Using
Weighting Functions!

Suppose we apply the H∞ synthesis on the generalized plant P (s) shown in Figure 5.1. It will generate
a controller K(s) such that the H∞ norm of closed-loop transfer function from r to ε is minimized
which is equal to the sensitivity function S. Therefore, the synthesis objective is to minimize the H∞
norm of the sensitivity function: ‖S‖∞.

However, as theH∞ norm is the maximum peak value of the transfer function’s magnitude, this synthesis
is quite useless as it will just try to decrease of peak value of S. Clearly this does not allow to shape
the norm of S(jω) over all frequencies nor specify the wanted low frequency gain of S or bandwidth
requirements.

Important

The trick is to include a weighting functionWS(s) in the generalized plant as shown in Figure
5.2.
Now, the closed-loop transfer function from w to z is equal to Ws(s)S(s) and applying the
H∞ synthesis to the weighted generalized plant P̃ (s) will generate a controller K(s) such that
‖Ws(s)S(s)‖∞ is minimized.

31

Generalized Plant P (s)

G(s) +−

K(s)

z = ε

vu

w = r

Figure 5.1: Generalized Plant

Let’s now show how this is equivalent as shaping the sensitivity function:

‖Ws(s)S(s)‖∞ < 1

⇔|Ws(jω)S(jω)| < 1 ∀ω

⇔|S(jω)| < 1

|Ws(jω)|
∀ω (5.1)

Important

As shown in Equation (5.1), the objective of the H∞ synthesis applied on the weighted plant
is to make the norm sensitivity function smaller than the inverse of the norm of the weighting
function, and that at all frequencies.
Therefore, the choice of the weighting function Ws(s) is very important: its inverse magnitude
will define the wanted upper bound of the sensitivity function magnitude over all frequencies.

Weighted Generalized Plant P̃ (s)

G(s) +−

Ws(s)

K(s)

ε z = ε̃

vu

w = r

Figure 5.2: Weighted Generalized Plant

Exercice

Using matlab, compute the weighted generalized plant shown in Figure 5.3 as a function of G(s)
and WS(s).

Hint

32

The weighted generalized plant can be defined in Matlab using two techniques:

• by writing manually the 4 transfer functions from [w, u] to [ε̃, v]

• by pre-multiplying the (non-weighted) generalized plant by a block-diagonal transfer func-
tion matrix containing the weights for the outputs z and 1 for the outputs v

Answer

The two solutions below can be used.

Matlab
Pw = [Ws -Ws*G;

1 -G];

The second solution is however more general, and can also be used when weights are added at
the inputs by post-multiplying instead of pre-multiplying.

Matlab
P = [1 -G;

1 -G];
Pw = blkdiag(Ws, 1)*P;

5.2 Design of Weighting Functions

Weighting function included in the generalized plant must be proper, stable and minimum phase
transfer functions.

Definition

proper more poles than zeros, this implies limω→∞ |W (jω)| <∞

stable no poles in the right half plane

minimum phase no zeros in the right half plane

Good guidelines for design of weighting function are given in [1].

There is a Matlab function called makeweight that allows to design first-order weights by specifying
the low frequency gain, high frequency gain, and the gain at a specific frequency:

Matlab
W = makeweight(dcgain,[freq,mag],hfgain)

with:

• dcgain : low frequency gain

• [freq,mag] : frequency freq at which the gain is mag

• hfgain : high frequency gain

33

Example

The Matlab code below produces a weighting function with the following characteristics (Figure
5.3):

• Low frequency gain of 100

• Gain of 1 at 10Hz

• High frequency gain of 0.5

Matlab
Ws = makeweight(1e2, [2*pi*10, 1], 1/2);

10!2 10!1 100 101 102

Frquency [Hz]

100

101

102

M
a
g
n
it
u
d
e

Figure 5.3: Obtained Magnitude of the Weighting Function

See Also

Quite often, higher orders weights are required.
In such case, the following formula can be used:

W (s) =


1
ω0

√
1−(G0

Gc
)

2
n

1−(Gc
G∞)

2
n
s+

(
G0

Gc

) 1
n

(
1

G∞

) 1
n 1

ω0

√
1−(G0

Gc
)

2
n

1−(Gc
G∞)

2
n
s+

(
1
Gc

) 1
n


n

(5.2)

The parameters permit to specify:

• the low frequency gain: G0 = limω→0|W (jω)|

• the high frequency gain: G∞ = limω→∞|W (jω)|

• the absolute gain at ω0: Gc = |W (jω0)|

• the absolute slope between high and low frequency: n

A Matlab function implementing Equation (5.2) is shown below:

34

Matlab
function [W] = generateWeight(args)

arguments
args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
args.wc (1,1) double {mustBeNumeric, mustBePositive} = 2*pi
args.n (1,1) double {mustBeInteger, mustBePositive} = 1

end

if (args.Gc <= args.G0 && args.Gc <= args.G1) || (args.Gc >= args.G0 && args.Gc >= args.G1)
eid = 'value:range';
msg = 'Gc must be between G0 and G1';
throwAsCaller(MException(eid,msg))

end

s = zpk('s');

W = (((1/args.wc) * sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s +
(args.G0/args.Gc)^(1/args.n)) / ((1/args.G1)^(1/args.n) * (1/args.wc) *
sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (1/args.Gc)^(1/args.n)))^args.n;

↪→
↪→

end

Let’s use this function to generate three weights with the same high and low frequency gains,
but but different slopes.

Matlab
W1 = generateWeight('G0', 1e2, 'G1', 1/2, 'Gc', 1, 'wc', 2*pi*10, 'n', 1);
W2 = generateWeight('G0', 1e2, 'G1', 1/2, 'Gc', 1, 'wc', 2*pi*10, 'n', 2);
W3 = generateWeight('G0', 1e2, 'G1', 1/2, 'Gc', 1, 'wc', 2*pi*10, 'n', 3);

The obtained shapes are shown in Figure 5.4.

10!2 10!1 100 101 102

Frquency [Hz]

100

101

102

M
a
g
n
it
u
d
e

n = 1
n = 2
n = 3

Figure 5.4: Higher order weights using Equation (5.2)

5.3 Shaping the Sensitivity Function

Let’s design a controller using the H∞ shaping of the sensitivity function that fulfils the following
requirements:

1. Bandwidth of at least 10Hz

35

2. Small static errors for step responses

3. Robustness: Large module margin ∆M > 0.5 (⇒ ∆G > 2 and ∆φ > 29o)

As usual, the plant used is the one presented in Section 1.3.

Exercice

Translate the requirements as upper bounds on the Sensitivity function and design the corre-
sponding weighting functions using Matlab.

Hint

The typical wanted upper bound of the sensitivity function is shown in Figure 5.5.
More precisely:

1. Recall that the closed-loop bandwidth is defined as the frequency |S(jω)| first crosses
1/
√

2 = −3dB from below

2. For the small static error, -60dB is usually enough as other factors (measurement noise,
disturbances) will anyhow limit the performances

3. Recall that the module margin is equal to the inverse of the H∞ norm of the sensitivity
function:

∆M =
1

‖S‖∞

Remember that the wanted upper bound of the sensitivity function is defined by the inverse
magnitude of the weight.

10−2 10−1 100 101 102 103 104

40

20

0

−20

−40

−60

−80
Small static error

Speed

Robustness

Frequency [Hz]

M
ag

ni
tu

de
[d

B]

Figure 5.5: Typical wanted shape of the Sensitivity transfer function

Answer

We want to design the weighting function Ws(s) such that:

1. |Ws(j · 2π10)| =
√

2

2. |Ws(j · 0)| = 103

3. ‖Ws‖∞ = 0.5

36

Using Matlab, such weighting function can be generated using the makeweight function as shown
below:

Matlab
Ws = makeweight(1e3, [2*pi*10, sqrt(2)], 1/2);

Or using the generateWeight function:

Matlab
Ws = generateWeight('G0', 1e3, ...

'G1', 1/2, ...
'Gc', sqrt(2), 'wc', 2*pi*10, ...
'n', 2);

Let’s say we came up with the following weighting function:
Matlab

Ws = generateWeight('G0', 1e3, ...
'G1', 1/2, ...
'Gc', sqrt(2), 'wc', 2*pi*10, ...
'n', 2);

The weighting function is then added to the generalized plant.
Matlab

P = [1 -G;
1 -G];

Pw = blkdiag(Ws, 1)*P;

And the H∞ synthesis is performed on the weighted generalized plant.
Matlab

K = hinfsyn(Pw, 1, 1, 'Display', 'on');

Results
Test bounds: 0.5 <= gamma <= 0.51

gamma X>=0 Y>=0 rho(XY)<1 p/f
5.05e-01 0.0e+00 0.0e+00 3.000e-16 p
Limiting gains...
5.05e-01 0.0e+00 0.0e+00 3.461e-16 p
5.05e-01 -3.5e+01 # -4.9e-14 1.732e-26 f

Best performance (actual): 0.503

γ ≈ 0.5 means that the H∞ synthesis generated a controller K(s) that stabilizes the closed-loop system,
and such that the H∞ norm of the closed-loop transfer function from w to z is less than γ:

‖Ws(s)S(s)‖∞ ≈ 0.5

⇔ |S(jω)| < 0.5

|Ws(jω)|
∀ω

This is indeed what we can see by comparing |S| and |WS | in Figure 5.6.

37

Important

Obtaining γ < 1 means that the H∞ synthesis found a controller such that the specified closed-
loop transfer functions are bellow the specified upper bounds.
Yet, obtaining a γ slightly above one does not necessary means the synthesis is unsuccessful. It
just means that at some frequency, one of the closed-loop transfer functions is above the specified
upper bound by a factor γ.

10!2 10!1 100 101 102

Frequency [Hz]

10!4

10!2

100

M
a
g
n
it
u
d
e

jWsj!1

jSj

Figure 5.6: Weighting function and obtained closed-loop sensitivity

5.4 Shaping multiple closed-loop transfer functions - Limitations

As was shown in Section 4, each of the four main closed-loop transfer functions (called the gang of four)
will impact different characteristics of the closed-loop system. This is summarized in Table 5.1.

Therefore, we might want to shape multiple closed-loop transfer functions at the same time. For instance
S could be shape to have good step responses, KS to limit the input usage and T to filter measurement
noise. When multiple closed-loop transfer function are shaped at the same time, it is refereed to as
Mixed-Sensitivity H∞ Control and is the subject of Section 6.

Depending on which closed-loop transfer function are to be shaped, different weighted generalized plant
can be used. Some of them are described below for reference, it is a good exercise to try to re-design
such weighted generalized plants.

38

Table 5.1: Typical specifications and corresponding shaping of the Gang of four

Specifications TF Wanted shape

Fast Reference Tracking S Set lower bound on the bandwidth
Small Steady State Errors S Small low frequency gain
Follow Step ref. inputs S Slope of +20dB/dec at low frequency
Follow Ramp ref. inputs S Slope of +40dB/dec at low frequency
Follow Sin. ref. inputs S Small magnitude centered on the sin. frequency

Output Disturbance Rejection S Small gain in the disturbance bandwidth
Input Disturbance Rejection GS Small gain in the disturbance bandwidth
Prevent notching resonances GS Limit gain around resonance

Small Command Amplitude KS Small at high frequency
Limitation of the Bandwidth T Set an upper bound on the bandwidth
Measurement Noise Filtering T Small high frequency gain

Stability margins S Module margin: ‖S‖∞ small
Robust to unmodelled dynamics T Small at freq. where uncertainty is large

Example - Shape S and KS

Weighted Generalized Plant P

G +−

W2

W1

K

z1

z2

vu

w

Figure 5.7: Generalized Plant to shape S and KS

Weighting functions:

• W1(s) is used to shape S

• W2(s) is used to shape KS

Matlab
P = [1 -G

0 1
1 -G];

Pw = blkdiag(W1, W2, 1)*P;

39

Example - Shape S and T

Weighted Generalized Plant P

G +−

W2

W1

K

z1

z2

vu

w

Figure 5.8: Generalized Plant to shape S and T

Weighting functions:

• W1 is used to shape S

• W2 is used to shape T

Matlab
P = [1 -G

0 G
1 -G];

Pw = blkdiag(W1, W2, 1)*P;

Example - Shape S and GS

Weighted Generalized Plant P

G+−

W2

W1

K

z1

z2

vu

w

40

Figure 5.9: Generalized Plant to shape S and GS

Weighting functions:

• W1 is used to shape S

• W2 is used to shape GS

Matlab
P = [1 -1

G -G
G -G];

Pw = blkdiag(W1, W2, 1)*P;

Example - Shape S, T and KS

Weighted Generalized Plant P

G +−

W3

W2

W1

K

z1

z2

z3

vu

w

Figure 5.10: Generalized Plant to shape S, T and KS

Weighting functions:

• W1 is used to shape S

• W2 is used to shape KS

• W3 is used to shape T

Matlab
P = [1 -G

0 1
0 G
1 -G];

Pw = blkdiag(W1, W2, W3, 1)*P;

41

Example - Shape S, T and GS

Weighted Generalized Plant P

G+−

W3

W2

W1

K

z1

z2

z3

vu

w

Figure 5.11: Generalized Plant to shape S, T and GS

Weighting functions:

• W1 is used to shape S

• W2 is used to shape GS

• W3 is used to shape T

Matlab
P = [1 -1

G -G
0 1
G -G];

Pw = blkdiag(W1, W2, W3, 1)*P;

42

Example - Shape S, T , KS and GS

Weighted Generalized Plant P

G +−+

W2

W1

W3

1

K

z1

z2

vu

w1

w2

Figure 5.12: Generalized Plant to shape S, T , KS and GS

Weighting functions:

• W1 is used to shape S

• W2 is used to shape KS

• W1W3 is used to shape GS

• W2W3 is used to shape T

Matlab
P = [1 -G -G

0 0 1
1 -G -G];

Pw = blkdiag(W1, W2, 1)*P*blkdiag(1, W3, 1);

Important

When shaping multiple closed-loop transfer functions, one should be very careful about the three
following points that are further discussed:

• The shaped closed-loop transfer functions are linked by mathematical relations and cannot
be shaped independently

• Closed-loop transfer function can only be shaped in certain frequency range

• The size of the obtained controller may be very large and not implementable in practice

43

Warning

Mathematical relations are linking the closed-loop transfer functions. For instance, the sensitivity
function S(s) and the complementary sensitivity function T (s) are linked by the following well
known relation:

S(s) + T (s) = 1 (5.3)

This means that |S(jω)| and |T (jω)| cannot be made small at the same time!
It is therefore not possible to shape the four closed-loop transfer functions independently. The
weighting function should be carefully design such as these fundamental relations are not vio-
lated.

For practical control systems, above some frequency (the control bandwidth), the loop gain is much
smaller than 1. On the other size, there is a frequency range where the loop gain is much larger than
1, this frequency range is called the bandwidth. Let’s see what does that means for the closed-loop
transfer function. First, take the case of the sensibility function:

|G(jω)K(jω)| � 1 =⇒ |S(jω)| = 1

1 + |G(jω)K(jω)|
≈ 1

|G(jω)K(jω)| � 1 =⇒ |S(jω)| = 1

1 + |G(jω)K(jω)|
≈ 1

|G(jω)K(jω)|

This means that the Sensitivity function cannot be shaped at frequencies where the loop gain is small.

Similar relationship can be found for T , KS and GS.

Exercice

Determine the approximate norms of T , KS and GS for large loop gains (|G(jω)K(jω)| � 1)
and small loop gains (|G(jω)K(jω)| � 1).

Hint

You can follows this procedure for T , KS and GS:

1. Write the closed-loop transfer function as a function of K(s) and G(s)

2. Take |K(jω)G(jω)| � 1 and conclude on the norm of the closed-loop transfer function

3. Take |K(jω)G(jω)| � 1 and conclude

Answer

The obtained constrains are shown in Figure 5.13.

Depending on the frequency band, the norms of the closed-loop transfer functions are a function of the
controller K and therefore can be shaped. However, in some frequency band, the norms do not depend
on the controller and therefore cannot be shaped.

Therefore the weighting functions should only focus on certainty frequency range depending on the
transfer function being shaped. These regions are summarized in Figure 5.13.

44

S GS

KS T

∼ GK−1 ∼ 1 ∼ K−1 ∼ G

∼ G−1

∼ K ∼ 1 ∼ GK

Figure 5.13: Shaping the Gang of Four. Blue regions indicate that the transfer function can be shaped
using K. Red regions indicate this is not the case

Warning

The order (e.g. number of state) of the controller given by the H∞ synthesis is equal to the
order (e.g. number of state) of the weighted generalized plant. It is thus equal to the sum of
the number of state of the non-weighted generalized plant and the number of state of all the
weighting functions. Then, the H∞ synthesis usually generate a controller with a very high order
that is not implementable in practice.
Two approaches can be used to obtain controllers with reasonable order:

1. use simple weights (usually first order)

2. perform a model reduction on the obtained high order controller

45

6 Mixed-Sensitivity H∞ Control - Example

Let’s now apply the H∞ Shaping control procedure on a practical example.

In Section 6.1 the control problem is presented. The design procedure used to apply the H∞ Mixed
Sensitivity synthesis is described in Section 6.2.

The important step of interpreting the specifications as wanted shape of closed-loop transfer functions
is performed in Section 6.3.

Finally, the shaping of closed-loop transfer functions is performed in Sections 6.4, 6.5 and 6.6.

6.1 Control Problem

Let’s consider our usual test system shown in Figure 6.1.

m

k c

d

+ +−

K(s)

y

n r

ε

u

Figure 6.1: Test System consisting of a payload with a mass m on top of an active system with a
stiffness k, damping c and an actuator. A feedback controller K(s) is added to position /
isolate the payload.

Important

The control specifications are:

• The displacement y should follow reference inputs r with negligible static error after 0.1s

• Reject disturbances d in less than 0.1s

• Limit the effect of measurement noise n on the output displacement y

• Obtain a Robust System with good stability margins

The considered inputs are:

46

• disturbances d as step inputs with an amplitude of 5µm

• reference inputs with are ramp inputs with a slope of 100µm/s and a time duration of 0.2 s

• measurement noise n with a large spectral density at high frequency (increasing starting from
100Hz)

6.2 Control Design Procedure

Here is the general design procedure that will be followed:

1. Compute the model of the plant

2. Write the control system as a general control problem

3. Translate the specifications into the wanted shape of closed-loop transfer functions

4. Chose the suitable weighted general plant to shape the wanted quantities

5. Shape sequentially the chosen closed-loop transfer functions

Let’s first convert the system of Figure 6.1 into the classical feedback architecture of Figure 6.2.

+
−

K(s) G(s) +

Gd(s)

+

r ε u

d

y

n

Figure 6.2: Block diagram corresponding to the example system

The two transfer functions present in the system are derived and defined below:

Matlab
1 k = 1e6; % Stiffness [N/m]
2 c = 4e2; % Damping [N/(m/s)]
3 m = 10; % Mass [kg]
4
5 % Control Plant
6 G = 1/(m*s^2 + c*s + k);
7 % Disturbance dynamics
8 Gd = (c*s + k)/(m*s^2 + c*s + k);

We also define the inputs signals that will be used for time domain simulations. They are graphically
shown in Figure 6.3.

47

Matlab
9 % Time Vector

10 t = 0:1e-4:0.5;
11
12 % Reference Input
13 r = zeros(size(t));
14 r(t>0.05 & t<=0.25) = 1e-4*(t(t>0.05 & t<=0.25)-0.05);
15 r(t>0.25) = 2e-5;
16
17 % Measurement Noise
18 Fs = 1e3; % Sampling Frequency [Hz]
19 Ts = 1/Fs; % Sampling Time [s]
20 n = sqrt(Fs/2)*randn(1, length(t)); % Signal with an ASD equal to one
21 n = lsim(1e-6*(s + 2*pi*1e2)^2/(s + 2*pi*1e3)^2/(1+s/2/pi/500), n, t)'; % Shaped noise
22
23 % Disturbance
24 d = zeros(size(t));
25 d(t>0.3) = 5e-6;

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

5

10

15

20

R
ef

er
en

ce
S
ig

n
a
l
[7

m
]

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-20

-10

0

10

20

M
ea

su
re

m
en

t
N

o
is
e

[7
m

]

0 0.1 0.2 0.3 0.4 0.5

Time [s]

0

1

2

3

4

5

D
is
tu

rb
a
n
ce

M
o
ti
o
n

[7
m

]

Figure 6.3: Time domain inputs signals

We also define the generalized plant corresponding to the system and that will be used for time domain
simulations (Figure 6.4).

The Generalized plant of Figure 6.4 is defined on Matlab as follows:

Matlab
26 Psim = [0 0 Gd G
27 0 0 0 1
28 1 -1 -Gd -G];
29
30 Psim.InputName = {'r', 'n', 'd', 'u'};
31 Psim.OutputName = {'y', 'u', 'e'};

48

Generalized Plant Psim(s)

G(s)

Gd(s)

+ + +−

K(s)

y

u

εu

d

n

r

Figure 6.4: Generalized plant that will be used for simulations

Time domain simulations will be performed by first computing the closed-loop system using the lft
command and then using the lsim command on the closed-loop system:

Matlab
32 % Compute the closed-Loop System, K is the controller
33 P_CL = lft(Psim, K);
34
35 % Time simulation of the closed-loop system with specified inputs
36 z = lsim(P_CL, [r; n; d], t);
37 % The two outputs are
38 y = z(:,1); % Output Motion [m]
39 u = z(:,2); % Input usage [N]

6.3 Modern Interpretation of control specifications

Exercice

1. Translate the control specifications into wanted shape of closed-loop transfer functions

2. Conclude and the closed-loop transfer functions to be shaped

3. Chose a general configuration architecture that allows to shape these transfer function

4. Using Matlab, define the generalized plant

Hint

1. Make use of Table 5.1

2. Make use of Table 5.1

3. See Section 5.4

4. See Section 5.4

49

After converting the control specifications into wanted shape of closed-loop transfer functions, we might
come up with the Table 6.1.

In such case, we want to shape S, GS and T .

Table 6.1: Control Specifications and associated wanted shape of the closed-loop transfer functions

Specification TF Wanted Shape

Follow Step Reference S +40dB of slope at low fre-
quency

Reject Disturbances S, GS Small gain
Reject measurement noise T Small high frequency (>100Hz)

gain
Robust System S Small ‖S‖∞

To do so, we use to generalized plant shown in Figure 6.5 for the synthesis where the three closed-loop
tranfert functions from w to [z1 , z2 , z3] are respectively S, GS and T .

This generalized plant is defined on Matlab as follows:
Matlab

40 P = [1 -1
41 G -G
42 0 1
43 G -G];

Generalized Plant P

G+−

K

z1

z2

z3

vu

w

Figure 6.5: Generalized plant chosen for the shaping of S, GS T

However, to performed theH∞ loop shaping, we have to includeweighting function to the Generalized
plant. We obtain the weighted generalized plant in Figure 6.6, and that is computed using Matlab
as follows:

Matlab
44 Pw = blkdiag(W1, W2, W3, 1)*P;

Finlay, performing the H∞ Shaping of S, GS and T is as simple as ruining the hinfsyn command:

50

Figure 6.6: Generalized weighted plant used for the H∞ Synthesis

Matlab
45 K = hinfsyn(Pw, 1, 1);

Now let’s shape the three closed-loop transfer functions sequentially:

• S is shaped in Section 6.4

• GS is shaped in Section 6.5

• T is shaped in Section 6.6

6.4 Step 1 - Shaping of S

Let’s first shape the Sensitivity function as it is usually the most important of the Gang of four closed-
loop transfer functions. To do so, we have to create a weight W1(s) that defines the wanted upper
bound on |S(jω)|:

• small low frequency gain: |S(j · 0)| = 10−3

• minimum crossover frequency of ≈ 10Hz: |S(j2π10)| < 1√
2

• small maximum peak magnitude for robustness properties: ‖S‖∞ < 2

The weighting function is design using the generateWeigh function and its inverse shape can be seen
in Figure

51

Matlab
46 W1 = generateWeight('G0', 1e3, ...
47 'G1', 1/2, ...
48 'Gc', sqrt(2), 'wc', 2*pi*10, ...
49 'n', 1);

To not constrain GS and T for the shaping of S, W2 and W3 are first taken as very small gains:

Matlab
50 W2 = tf(1e-8);
51 W3 = tf(1e-8);

The H∞ synthesis is performed and the obtained closed-loop transfer functions S, GS, and T and
compared with the upper bounds set by the weighting functions in Figure 6.7.

Matlab
52 Pw = blkdiag(W1, W2, W3, 1)*P;
53 K1 = hinfsyn(Pw, 1, 1, 'Display', 'on');

Results
Test bounds: 0.5 <= gamma <= 0.51

gamma X>=0 Y>=0 rho(XY)<1 p/f
5.05e-01 0.0e+00 0.0e+00 5.511e-14 p
Limiting gains...
5.05e-01 0.0e+00 0.0e+00 1.867e-14 p

Best performance (actual): 0.502

Time domain simulation is then performed and the obtained output displacement and control inputs
are shown in Figure 6.8.

We can see:

• we are not able to follow the ramp input. This have to be solved by modifying the weighting
function W1(s)

• we have poor rejection of disturbances. This we be solve by shaping GS in Section 6.5

• we have quite large effect of the measurement noise. This will be solved by shaping T in Section
6.6

Remember that in order to follow ramp inputs, the sensitivity function should have a slope of +40dB/dec
at low frequency (Table 5.1).

To do so, let’s modify W1 to impose a slope of +40dB/dec at low frequency. This can simple be done
by using a second order weight:

Matlab
54 W1 = generateWeight('G0', 1e3, ...
55 'G1', 1/2, ...
56 'Gc', sqrt(2), 'wc', 2*pi*15, ...
57 'n', 2);

52

10!1 100 101 102 103

Frequency [Hz]

10!3

10!2

10!1

100

M
a
g
n
it
u
d
e

S

Step 1
jW j!1

10!1 100 101 102 103

Frequency [Hz]

10!9

10!8

10!7

10!6

10!5

M
a
g
n
it
u
d
e

GS

10!1 100 101 102 103

Frequency [Hz]

10!1

100

M
a
g
n
it
u
d
e

T

Figure 6.7: Obtained Shape Closed-Loop transfer functions (dashed black lines indicate inverse mag-
nitude of the weighting functions)

53

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-5

0

5

10

15

20

25

30

O
u
tp

u
t
y

[7
m

]

Step 1
r

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-15

-10

-5

0

5

10

15

20

25

30

35

C
o
n
tr

o
l
In

p
u
t
u

[N
]

Figure 6.8: Time domain simulation results

54

The H∞ synthesis is performed using the new weights and the obtained closed-loop shaped are shown
in figure 6.9.

The time domain signals are shown in Figure 6.10 and it is confirmed that the ramps are now follows
without static errors.

10!1 100 101 102 103

Frequency [Hz]

10!4

10!2

100

M
a
g
n
it
u
d
e

S

Step 1
Step 1b
jW!1j

10!1 100 101 102 103

Frequency [Hz]

10!10

10!5

M
a
g
n
it
u
d
e

GS

10!1 100 101 102 103

Frequency [Hz]

10!1

100

M
a
g
n
it
u
d
e

T

Figure 6.9: Obtained Shape Closed-Loop transfer functions

6.5 Step 2 - Shaping of GS

Looking at Figure 6.11, it is clear that the rejection of disturbances is not satisfactory. This can also
be seen by the large peak of GS in Figure 6.9.

This poor rejection of disturbances is actually due to the fact that the obtain controller has at notch
at the resonance frequency of the plant.

To overcome this issue, we can simply increase the magnitude of W2 to limit the peak magnitude of GS
Let’s take W2 as a simple constant gain:

55

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-5

0

5

10

15

20

25

30

O
u
tp

u
t
y

[7
m

]

Step 1
Step 1b
r

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-20

-10

0

10

20

30

40

50

C
o
n
tr

o
l
In

p
u
t
u

[N
]

Figure 6.10: Time domain simulation results

56

Matlab
58 W2 = tf(4e5);

The H∞ Synthesis is performed and the obtained closed-loop transfer functions are shown in Figure
6.11.

10!1 100 101 102 103

Frequency [Hz]

10!4

10!2

100

M
a
g
n
it
u
d
e

S

Step 1
Step 1b
Step 2
jW!1j

10!1 100 101 102 103

Frequency [Hz]

10!10

10!5

M
a
g
n
it
u
d
e

GS

10!1 100 101 102 103

Frequency [Hz]

10!1

100

M
a
g
n
it
u
d
e

T

Figure 6.11: Obtained Shape Closed-Loop transfer functions

Time domain simulation results are shown in Figure 6.12. If is shown that indeed, the disturbance
rejection performance are much better and only very small oscillation is obtained.

6.6 Step 3 - Shaping of T

Finally, we want to limit the effect of the noise on the displacement output.

To do so, T is shaped such that its high frequency gain is reduced.

57

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-5

0

5

10

15

20

25

30

O
u
tp

u
t
y

[7
m

]

Step 1
Step 1b
Step 2
r

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-20

-10

0

10

20

30

40

50

C
o
n
tr

o
l
In

p
u
t
u

[N
]

Figure 6.12: Time domain simulation results

58

This is done by increasing the high frequency gain of the weighting function W3 until the H∞ synthesis
gives γ ≈ 1.

The final weighting function W3 is defined as follows:

Matlab
59 W3 = generateWeight('G0', 1e-1, ...
60 'G1', 1e4, ...
61 'Gc', 1, 'wc', 2*pi*70, ...
62 'n', 2);

The H∞ synthesis is performed and γ is closed to one. The obtained closed-loop transfer functions are
shown in Figure 6.13 and we can obverse that:

• The high frequency gain of T is indeed reduced

• This comes as the expense of a large magnitude both GS and S. This means we will probably
have slightly less good disturbance rejection and tracking performances.

10!1 100 101 102 103

Frequency [Hz]

10!4

10!2

100

M
a
g
n
it
u
d
e

S

Step 1
Step 1b
Step 2
Step 3
jW!1j

10!1 100 101 102 103

Frequency [Hz]

10!10

10!5
M

a
g
n
it
u
d
e

GS

10!1 100 101 102 103

Frequency [Hz]

10!3

10!2

10!1

100

101

M
ag

n
it
u
d
e

T

Figure 6.13: Obtained Shape Closed-Loop transfer functions

59

The time domain simulation signals are shown in Figure 6.14. We can indeed see a slightly less good
disturbance rejection. However, the vibrations induced by the sensor noise is well reduced. This can be
seen when zooming on the output signal in Figure 6.15.

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-5

0

5

10

15

20

25

30

O
u
tp

u
t
y

[7
m

]

Step 1
Step 1b
Step 2
Step 3
r

0 0.1 0.2 0.3 0.4 0.5

Time [s]

-30

-20

-10

0

10

20

30

40

50

C
o
n
tr

o
l
In

p
u
t
u

[N
]

Figure 6.14: Time domain simulation results

6.7 Conclusion and Discussion

Hopefully this practical example will help you apply the H∞ Shaping synthesis on other control prob-
lems.

As an exercise, plot and analyze the evolution of the controller and loop gain transfer functions during
the 3 synthesis steps.

If the large input usage is considered to be not acceptable, the shaping of KS could be included in the
synthesis and all the Gang of four closed-loop transfer function shapes.

60

0.4 0.42 0.44 0.46 0.48 0.5

Time [s]

19

19.5

20

20.5

21

O
u
tp

u
t
y

[7
m

]

Step 1
Step 1b
Step 2
Step 3
r

Figure 6.15: Zoom on the output signal

61

7 Conclusion

Hopefully, this document gave you a glimpse on how useful and powerful the H∞ loop shaping synthesis
can be. One of the true power of H∞ synthesis is that is can easily be applied to multi-input multi-
output systems! If you want to know more about the “H∞ and robust control world” some resources
are given below.

62

Resources

For a complete treatment of multivariable robust control, I would highly recommend this book [4]. If
you want to nice reference book in French, look at [2].

You can also look at the very good lectures below.

Robust Control - Brian Douglas

Control Bootcamp - Steve Brunton

63

https://www.youtube.com/embed/?listType=playlist&list=PLn8PRpmsu08qFLMfgTEzR8DxOPE7fBiin
https://www.youtube.com/embed/?listType=playlist&list=PLsjPUqcL7ZIFHCObUU_9xPUImZ203gB4o

Bibliography

[1] John E Bibel and D Stephen Malyevac. Guidelines for the selection of weighting functions for
H-infinity control. Tech. rep. NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA,
1992.

[2] G Duc and S Font. Commande H infinie et mu-analyse-des outils pour la robustesse. Lavoisier,
1999.

[3] Boris J. Lurie et al. “System Architecture Trades Using Bode-Step Control Design”. In: Journal of
Guidance, Control, and Dynamics 25.2 (2002), pp. 309–315. doi: 10.2514/2.4883. url: https:
//doi.org/10.2514/2.4883.

[4] Sigurd Skogestad and Ian Postlethwaite.Multivariable Feedback Control: Analysis and Design. John
Wiley, 2007. isbn: 9780470011683.

64

https://doi.org/10.2514/2.4883
https://doi.org/10.2514/2.4883
https://doi.org/10.2514/2.4883

	Introduction to Model Based Control
	Model Based Control - Methodology
	From Classical Control to Robust Control
	Example System

	Classical Open Loop Shaping
	Introduction to Loop Shaping
	Example of Manual Open Loop Shaping
	H Loop Shaping Synthesis
	Example of the H Loop Shaping Synthesis

	A first Step into the H world
	The H Norm
	H Synthesis
	The Generalized Plant
	The H Synthesis applied on the Generalized plant
	From a Classical Feedback Architecture to a Generalized Plant

	Modern Interpretation of Control Specifications
	Closed Loop Transfer Functions and the Gang of Four
	The Sensitivity Function
	Robustness: Module Margin
	Summary of typical specification and associated wanted shaping

	H Shaping of closed-loop transfer functions
	How to Shape closed-loop transfer function? Using Weighting Functions!
	Design of Weighting Functions
	Shaping the Sensitivity Function
	Shaping multiple closed-loop transfer functions - Limitations

	Mixed-Sensitivity H Control - Example
	Control Problem
	Control Design Procedure
	Modern Interpretation of control specifications
	Step 1 - Shaping of S
	Step 2 - Shaping of GS
	Step 3 - Shaping of T
	Conclusion and Discussion

	Conclusion

