#+TITLE: List of filters - Matlab Implementation :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :tangle filters.m #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :END: * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src * Low Pass ** First Order Low Pass Filter \[ H(s) = \frac{1}{1 + s/\omega_0} \] Parameters: - $\omega_0$: cut-off frequency in [rad/s] Characteristics: - Low frequency gain of $1$ - Roll-off equals to -20 dB/dec Matlab code: #+begin_src matlab w0 = 2*pi; % Cut-off Frequency [rad/s] H = 1/(1 + s/w0); #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(H, freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded hold off; xline(1, '--', 'LineWidth', 2); % Phase ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(H, freqs, 'Hz'))), 'k-'); set(gca,'xscale','log'); yticks(-90:15:0); ylim([-90 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_low_pass_first_order.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_low_pass_first_order #+caption: #+RESULTS: [[file:figs/filter_low_pass_first_order.png]] ** Second Order \[ H(s) = \frac{1}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \] Parameters: - $\omega_0$: - $\xi$: Damping ratio Characteristics: - Low frequency gain: 1 - High frequency roll off: - 40 dB/dec Matlab code: #+begin_src matlab w0 = 2*pi; % Cut-off frequency [rad/s] xi = 0.3; % Damping Ratio H = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src #+begin_src matlab :exports none xis = [0.1, 0.3, 0.5, 0.7, 0.9]; Hs = {zeros(length(xis), 1)}; for xi_i = 1:length(xis) Hs(xi_i) = {1/(1 + 2*xis(xi_i)/w0*s + s^2/w0^2)}; end #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, abs(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$\\xi = %.1f$', xis(xi_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'northeast'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(-180:30:0); ylim([-180 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_low_pass_second_order.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_low_pass_second_order #+caption: #+RESULTS: [[file:figs/filter_low_pass_second_order.png]] ** Combine multiple first order filters \[ H(s) = \left( \frac{1}{1 + s/\omega_0} \right)^n \] Matlab code: #+begin_src matlab w0 = 2*pi; % Cut-off frequency [rad/s] n = 3; % Filter order H = (1/(1 + s/w0))^n; #+end_src #+begin_src matlab :exports none ns = [1, 2, 3, 4]; Hs = {zeros(length(ns), 1)}; for n_i = 1:length(ns) Hs(n_i) = {1/(1 + s/w0)^ns(n_i)}; end #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for n_i = 1:length(ns) plot(freqs, abs(squeeze(freqresp(Hs{n_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$n = %i$', ns(n_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'northeast'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for n_i = 1:length(ns) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hs{n_i}, freqs, 'Hz')))), '-'); end set(gca,'xscale','log'); yticks(-360:45:0); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_low_pass_first_order_add.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_low_pass_first_order_add #+caption: #+RESULTS: [[file:figs/filter_low_pass_first_order_add.png]] * High Pass ** First Order \[ H(s) = \frac{s/\omega_0}{1 + s/\omega_0} \] Parameters: - $\omega_0$: cut-off frequency in [rad/s] Characteristics: - High frequency gain of $1$ - Low frequency slow of +20 dB/dec Matlab code: #+begin_src matlab w0 = 2*pi; % Cut-off frequency [rad/s] H = (s/w0)/(1 + s/w0); #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(H, freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded hold off; xline(1, '--', 'LineWidth', 2); % Phase ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(H, freqs, 'Hz'))), 'k-'); set(gca,'xscale','log'); yticks(0:15:90); ylim([0, 90]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_high_pass_first_order.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_high_pass_first_order #+caption: #+RESULTS: [[file:figs/filter_high_pass_first_order.png]] ** Second Order \[ H(s) = \frac{s^2/\omega_0^2}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \] Parameters: - $\omega_0$: - $\xi$: Damping ratio Matlab code: #+begin_src matlab w0 = 2*pi; % [rad/s] xi = 0.3; H = (s^2/w0^2)/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src #+begin_src matlab :exports none xis = [0.1, 0.3, 0.5, 0.7, 0.9]; Hs = {zeros(length(xis), 1)}; for xi_i = 1:length(xis) Hs(xi_i) = {(s^2/w0^2)/(1 + 2*xis(xi_i)/w0*s + s^2/w0^2)}; end freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, abs(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$\\xi = %.1f$', xis(xi_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'northeast'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(0:30:180); ylim([0 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_high_pass_second_order.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_high_pass_second_order #+caption: #+RESULTS: [[file:figs/filter_high_pass_second_order.png]] ** Combine multiple filters \[ H(s) = \left( \frac{s/\omega_0}{1 + s/\omega_0} \right)^n \] Matlab code: #+begin_src matlab w0 = 2*pi; % [rad/s] n = 3; H = ((s/w0)/(1 + s/w0))^n; #+end_src #+begin_src matlab :exports none ns = [1, 2, 3, 4]; Hs = {zeros(length(ns), 1)}; for n_i = 1:length(ns) Hs(n_i) = {((s/w0)/(1 + s/w0))^ns(n_i)}; end #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for n_i = 1:length(ns) plot(freqs, abs(squeeze(freqresp(Hs{n_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$n = %i$', ns(n_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'northeast'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for n_i = 1:length(ns) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{n_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(-180:45:180); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_0'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_high_pass_first_order_add.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_high_pass_first_order_add #+caption: #+RESULTS: [[file:figs/filter_high_pass_first_order_add.png]] * TODO Band Pass ** Second Order * Notch ** Second Order \begin{equation} \frac{s^2 + 2 g_c \xi \omega_n s + \omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2} \end{equation} Parameters: - $\omega_n$: frequency of the notch - $g_c$: gain at the notch frequency - $\xi$: damping ratio (notch width) Matlab code: #+begin_src matlab gc = 0.02; xi = 0.1; wn = 2*pi; H = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); #+end_src #+begin_src matlab :exports none xi = 0.2; gcs = [0.02, 0.1, 0.5]; Hs = {zeros(length(gcs), 1)}; for g_i = 1:length(gcs) Hs(g_i) = {(s^2 + 2*gcs(g_i)*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2)}; end freqs = logspace(-1, 1, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for g_i = 1:length(gcs) plot(freqs, abs(squeeze(freqresp(Hs{g_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$g_c = %.2f$', gm(g_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'southeast'); hold off; % Phase ax2 = nexttile; hold on; for g_i = 1:length(gcs) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{g_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(-90:30:90); ylim([-90 90]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_notch_xi.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_notch_xi #+caption: #+RESULTS: [[file:figs/filter_notch_xi.png]] #+begin_src matlab :exports none xis = [0.05, 0.1, 0.5]; gc = 0.1; Hs = {zeros(length(xis), 1)}; for xi_i = 1:length(xis) Hs(xi_i) = {(s^2 + 2*gc*xis(xi_i)*wn*s + wn^2)/(s^2 + 2*xis(xi_i)*wn*s + wn^2)}; end freqs = logspace(-1, 1, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, abs(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$\\xi = %.2f$', xis(xi_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'southeast'); hold off; % Phase ax2 = nexttile; hold on; for xi_i = 1:length(xis) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{xi_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(-90:30:90); ylim([-90 90]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_notch_gc.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_notch_gc #+caption: #+RESULTS: [[file:figs/filter_notch_gc.png]] * TODO Chebyshev ** Chebyshev Type I #+begin_src matlab n = 4; % Order of the filter Rp = 3; % Maximum peak-to-peak ripple [dB] Wp = 2*pi; % passband-edge frequency [rad/s] [A,B,C,D] = cheby1(n, Rp, Wp, 'high', 's'); H = ss(A, B, C, D); #+end_src * Lead - Lag ** Lead \begin{equation} H(s) = \frac{1 + \frac{s}{w_c/\sqrt{a}}}{1 + \frac{s}{w_c \sqrt{a}}}, \quad a > 1 \end{equation} Parameters: - $\omega_c$: frequency at which the phase lead is maximum - $a$: parameter to adjust the phase lead, also impacts the high frequency gain Characteristics: - the low frequency gain is $1$ - the high frequency gain is $a$ - the phase lead at $\omega_c$ is equal to (Figure [[fig:filter_lead_effect_a_phase]]): \[ \angle H(j\omega_c) = \tan^{-1}(\sqrt{a}) - \tan^{-1}(1/\sqrt{a}) \] Matlab code: #+begin_src matlab a = 0.6; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi; % Frequency with the maximum phase lead [rad/s] H = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); #+end_src #+begin_src matlab :exports none wc = 2*pi; as = [1.2, 2, 5]; Hs = {zeros(length(as), 1)}; for a_i = 1:length(as) Hs(a_i) = {(1 + s/(wc/sqrt(as(a_i))))/(1 + s/(wc*sqrt(as(a_i))))}; end freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for a_i = 1:length(as) plot(freqs, abs(squeeze(freqresp(Hs{a_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$a = %.1f$', as(a_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'northwest'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for a_i = 1:length(as) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{a_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(0:15:60); ylim([0 60]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_c'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'top', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_lead.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_lead #+caption: #+RESULTS: [[file:figs/filter_lead.png]] #+begin_src matlab :exports none as = logspace(0, 1, 100); figure; plot(as, 180/pi*(atan(sqrt(as)) - atan(1./sqrt(as)))) xlabel('$a$'); ylabel('Phase added at $\omega_c$ [deg]'); yticks(0:15:60); ylim([0, 60]); xticks(1:1:10); xlim([as(1), as(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_lead_effect_a_phase.pdf', 'width', 'normal', 'height', 'normal'); #+end_src #+name: fig:filter_lead_effect_a_phase #+caption: #+RESULTS: [[file:figs/filter_lead_effect_a_phase.png]] ** Lag \begin{equation} H(s) = \frac{w_c \sqrt{a} + s}{\frac{w_c}{\sqrt{a}} + s}, \quad a > 1 \end{equation} Parameters: - $\omega_c$: frequency at which the phase lag is maximum - $a$: parameter to adjust the phase lag, also impacts the low frequency gain Characteristics: - the low frequency gain is increased by a factor $a$ - the high frequency gain is $1$ (unchanged) - the phase lag at $\omega_c$ is equal to (Figure [[fig:filter_lag_effect_a_phase]]): \[ \angle H(j\omega_c) = \tan^{-1}(1/\sqrt{a}) - \tan^{-1}(\sqrt{a}) \] Matlab code: #+begin_src matlab a = 0.6; % Amount of phase lag / width of the phase lag / high frequency gain wc = 2*pi; % Frequency with the maximum phase lag [rad/s] H = (wc*sqrt(a) + s)/(wc/sqrt(a) + s); #+end_src #+begin_src matlab :exports none wc = 2*pi; as = [1.2, 2, 5]; Hs = {zeros(length(as), 1)}; for a_i = 1:length(as) Hs(a_i) = {(wc*sqrt(as(a_i)) + s)/(wc/sqrt(as(a_i)) + s)}; end freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile; hold on; for a_i = 1:length(as) plot(freqs, abs(squeeze(freqresp(Hs{a_i}, freqs, 'Hz'))), '-', ... 'DisplayName', sprintf('$a = %.1f$', as(a_i))); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); axis padded legend('location', 'southwest'); hold off; xline(1, '--', 'LineWidth', 2, 'HandleVisibility', 'off'); % Phase ax2 = nexttile; hold on; for a_i = 1:length(as) plot(freqs, 180/pi*angle(squeeze(freqresp(Hs{a_i}, freqs, 'Hz'))), '-'); end set(gca,'xscale','log'); yticks(-60:15:0); ylim([-60 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; xline(1, '--', {'\omega_c'}, 'LineWidth', 2, 'LabelVerticalAlignment', 'bottom', 'LabelOrientation', 'horizontal'); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_lag.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:filter_lag #+caption: #+RESULTS: [[file:figs/filter_lag.png]] #+begin_src matlab :exports none as = logspace(0, 1, 100); figure; plot(as, 180/pi*(atan(1./sqrt(as)) - atan(sqrt(as)))) xlabel('$a$'); ylabel('Phase added at $\omega_c$ [deg]'); yticks(-60:15:0); ylim([-60, 0]); xticks(1:1:10); xlim([as(1), as(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/filter_lag_effect_a_phase.pdf', 'width', 'normal', 'height', 'normal'); #+end_src #+name: fig:filter_lag_effect_a_phase #+caption: #+RESULTS: [[file:figs/filter_lag_effect_a_phase.png]] * TODO Complementary * TODO Performance Weight ** Nice combination \begin{equation} W(s) = G_c * \left(\frac{\frac{1}{\omega_0}\sqrt{\frac{1 - \left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{1 - \left(\frac{G_c}{G_\infty}\right)^{\frac{2}{n}}}} s + \left(\frac{G_0}{G_c}\right)^{\frac{1}{n}}}{\frac{1}{\omega_0} \sqrt{\frac{1 - \left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{\left(\frac{G_\infty}{G_c}\right)^{\frac{2}{n}} - 1}} s + 1}\right)^n \end{equation} #+begin_src matlab n = 2; w0 = 2*pi*11; G0 = 1/10; G1 = 1000; Gc = 1/2; wL = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n; n = 3; w0 = 2*pi*9; G0 = 10000; G1 = 0.1; Gc = 1/2; wH = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n; #+end_src ** Alternative #+begin_src matlab w0 = 2*pi; % [rad/s] A = 1e-2; M = 5; H = (s/sqrt(M) + w0)^2/(s + w0*sqrt(A))^2; #+end_src #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); resp = squeeze(freqresp(inv(H), freqs, 'Hz')); Ha = abs(resp); Hp = 180/pi*phase(resp); T = table(freqs', Ha, Hp, 'VariableNames', {'freqs', 'amplitude', 'phase'}); writetable(T,'mat/weight_first_order.csv'); #+end_src #+begin_src latex :file weight_first_order.pdf :tangle figs/weight_first_order.tex :exports results \setlength\fwidth{8cm} \setlength\fheight{4cm} \definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% \definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% \begin{tikzpicture} \begin{axis}[% width=\fwidth, height=\fheight, at={(0,0)}, scale only axis, separate axis lines, every outer x axis line/.append style={black}, every x tick label/.append style={font=\color{black}}, every x tick/.append style={black}, xmode=log, xmin=0.01, xmax=100, xminorticks=true, xlabel={Frequency [Hz]}, every outer y axis line/.append style={black}, every y tick label/.append style={font=\color{black}}, every y tick/.append style={black}, ymode=log, ymin=5e-3, ymax=1e1, yminorticks=true, ylabel={Amplitude}, axis background/.style={fill=white}, xmajorgrids, xminorgrids, ymajorgrids, yminorgrids ] \addplot[color=black, mark=none] table [x=freqs, y=amplitude, col sep=comma] {/home/thomas/Cloud/thesis/matlab/filters/matweight_first_order.csv}; \draw[dashed] (0.01,1e-2) -- (1,1e-2) node[right]{$A$}; \draw[dashed] (1,5) node[left]{$M$} -- (100,5); \draw[dashed] (1,1) -- (1,0.5) node[below]{$\omega_b^*$}; \end{axis} \end{tikzpicture} #+end_src #+RESULTS: [[file:figs/weight_first_order.png]] * TODO Combine Filters ** Additive - [ ] Explain how phase and magnitude combine ** Multiplicative * TODO Filters representing noise Let's consider a noise $n$ that is shaped from a white-noise $\tilde{n}$ with unitary PSD ($\Phi_\tilde{n}(\omega) = 1$) using a transfer function $G(s)$. The PSD of $n$ is then: \[ \Phi_n(\omega) = |G(j\omega)|^2 \Phi_{\tilde{n}}(\omega) = |G(j\omega)|^2 \] The PSD $\Phi_n(\omega)$ is expressed in $\text{unit}^2/\text{Hz}$. And the root mean square (RMS) of $n(t)$ is: \[ \sigma_n = \sqrt{\int_{0}^{\infty} \Phi_n(\omega) d\omega} \] ** First Order Low Pass Filter \[ G(s) = \frac{g_0}{1 + \frac{s}{\omega_c}} \] #+begin_src matlab g0 = 1; % Noise Density in unit/sqrt(Hz) wc = 1; % Cut-Off frequency [rad/s] G = g0/(1 + s/wc); % Frequency vector [Hz] freqs = logspace(-3, 3, 1000); % PSD of n in [unit^2/Hz] Phi_n = abs(squeeze(freqresp(G, freqs, 'Hz'))).^2; % RMS value of n in [unit, rms] sigma_n = sqrt(trapz(freqs, Phi_n)) #+end_src \[ \sigma = \frac{1}{2} g_0 \sqrt{\omega_c} \] with: - $g_0$ the Noise Density of $n$ in $\text{unit}/\sqrt{Hz}$ - $\omega_c$ the bandwidth over which the noise is located, in rad/s - $\sigma$ the rms noise If the cut-off frequency is to be expressed in Hz: \[ \sigma = \frac{1}{2} g_0 \sqrt{2\pi f_c} = \sqrt{\frac{\pi}{2}} g_0 \sqrt{f_c} \] Thus, if a sensor is said to have a RMS noise of $\sigma = 10 nm\ rms$ over a bandwidth of $\omega_c = 100 rad/s$, we can estimated the noise density of the sensor to be (supposing a first order low pass filter noise shape): \[ g_0 = \frac{2 \sigma}{\sqrt{\omega_c}} \quad \left[ m/\sqrt{Hz} \right] \] #+begin_src matlab :results value replace 2*10e-9/sqrt(100) #+end_src #+RESULTS: : 2e-09 #+begin_src matlab :results value replace 6*0.5*20e-12*sqrt(2*pi*100) #+end_src #+RESULTS: : 1.504e-09