List of filters - Matlab Implementation
Table of Contents
-
-
- 1. Low Pass +
- 1. Low Pass -
- 2. High Pass +
- 2. High Pass -
- 3. Band Pass +
- 3. Band Pass -
- 4. Notch +
- 4. Notch -
- 5. Chebyshev +
- 5. Chebyshev -
- 6. Lead - Lag +
- 6. Lead - Lag -
- 7. Complementary -
- 8. Performance Weight +
- 7. Complementary +
- 8. Performance Weight -
- 9. Combine Filters +
- 9. Combine Filters -
- 10. Filters representing noise +
- 10. Filters representing noise
1 Low Pass
+1 Low Pass
1.1 First Order Low Pass Filter
+1.1 First Order Low Pass Filter
\[ H(s) = \frac{1}{1 + s/\omega_0} \]
@@ -129,7 +129,7 @@ H = 1/(1 + s
-
\[ H(s) = \frac{1}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \]
@@ -172,15 +172,15 @@ H = 1/(1 + 2
-
\[ H(s) = \left( \frac{1}{1 + s/\omega_0} \right)^n \]
@@ -198,7 +198,7 @@ H = (1/(1 + s
-
\[ H(s) = \frac{s/\omega_0}{1 + s/\omega_0} \]
@@ -243,15 +243,15 @@ H = (s/w0)/(1
-
\[ H(s) = \frac{s^2/\omega_0^2}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \]
@@ -277,15 +277,15 @@ H = (s^2/w0
-
\[ H(s) = \left( \frac{s/\omega_0}{1 + s/\omega_0} \right)^n \]
@@ -303,7 +303,7 @@ H = ((s/w0)/(1
-
Let’s consider a noise \(n\) that is shaped from a white-noise \(\tilde{n}\) with unitary PSD (\(\Phi_\tilde{n}(\omega) = 1\)) using a transfer function \(G(s)\).
@@ -577,8 +577,8 @@ And the root mean square (RMS) of \(n(t)\) is:
\[ G(s) = \frac{g_0}{1 + \frac{s}{\omega_c}} \]
@@ -646,7 +646,7 @@ Thus, if a sensor is said to have a RMS noise of \(\sigma = 10 nm\ rms\) over a
Created: 2020-10-26 lun. 14:03 Created: 2020-10-29 jeu. 10:091.2 Second Order
+1.2 Second Order
1.3 Combine multiple first order filters
+1.3 Combine multiple first order filters
2 High Pass
+2 High Pass
2.1 First Order
+2.1 First Order
2.2 Second Order
+2.2 Second Order
2.3 Combine multiple filters
+2.3 Combine multiple filters
3 Band Pass
+3 Band Pass
3.1 Second Order
+3.1 Second Order
4 Notch
+4 Notch
4.1 Second Order
+4.1 Second Order
5 Chebyshev
+5 Chebyshev
5.1 Chebyshev Type I
+5.1 Chebyshev Type I
n = 4; % Order of the filter
@@ -387,12 +387,12 @@ H = ss(A, B, C, D);
6 Lead - Lag
+6 Lead - Lag
6.1 Lead
+6.1 Lead
@@ -428,21 +428,21 @@ H = (1 + s/(wc
-6.2 Lag
+6.2 Lag
@@ -478,13 +478,13 @@ H = (wc*sqrt(a) + s)
7 Complementary
+7 Complementary
8 Performance Weight
+8 Performance Weight
8.1 Nice combination
+8.1 Nice combination
8.2 Alternative
+8.2 Alternative
w0 = 2*pi; % [rad/s]
@@ -533,7 +533,7 @@ H = (s/sqrt(M) + w0)
9 Combine Filters
+9 Combine Filters
9.1 Additive
+9.1 Additive
[ ]
Explain how phase and magnitude combine9.2 Multiplicative
+9.2 Multiplicative
10 Filters representing noise
+10 Filters representing noise
10.1 First Order Low Pass Filter
+10.1 First Order Low Pass Filter