diff --git a/figs/filter_high_pass_first_order.png b/figs/filter_high_pass_first_order.png new file mode 100644 index 0000000..f611b00 Binary files /dev/null and b/figs/filter_high_pass_first_order.png differ diff --git a/figs/filter_high_pass_first_order_add.png b/figs/filter_high_pass_first_order_add.png new file mode 100644 index 0000000..e841779 Binary files /dev/null and b/figs/filter_high_pass_first_order_add.png differ diff --git a/figs/filter_high_pass_second_order.png b/figs/filter_high_pass_second_order.png new file mode 100644 index 0000000..761e877 Binary files /dev/null and b/figs/filter_high_pass_second_order.png differ diff --git a/figs/filter_lag.png b/figs/filter_lag.png new file mode 100644 index 0000000..e3743dc Binary files /dev/null and b/figs/filter_lag.png differ diff --git a/figs/filter_lag_effect_a_phase.png b/figs/filter_lag_effect_a_phase.png new file mode 100644 index 0000000..e4f83b2 Binary files /dev/null and b/figs/filter_lag_effect_a_phase.png differ diff --git a/figs/filter_lead.png b/figs/filter_lead.png new file mode 100644 index 0000000..ad1ae82 Binary files /dev/null and b/figs/filter_lead.png differ diff --git a/figs/filter_lead_effect_a_phase.png b/figs/filter_lead_effect_a_phase.png new file mode 100644 index 0000000..f2411e9 Binary files /dev/null and b/figs/filter_lead_effect_a_phase.png differ diff --git a/figs/filter_low_pass_first_order.png b/figs/filter_low_pass_first_order.png new file mode 100644 index 0000000..1f87382 Binary files /dev/null and b/figs/filter_low_pass_first_order.png differ diff --git a/figs/filter_low_pass_first_order_add.png b/figs/filter_low_pass_first_order_add.png new file mode 100644 index 0000000..5762005 Binary files /dev/null and b/figs/filter_low_pass_first_order_add.png differ diff --git a/figs/filter_low_pass_second_order.png b/figs/filter_low_pass_second_order.png new file mode 100644 index 0000000..280311a Binary files /dev/null and b/figs/filter_low_pass_second_order.png differ diff --git a/figs/filter_notch_gc.png b/figs/filter_notch_gc.png new file mode 100644 index 0000000..81cbaee Binary files /dev/null and b/figs/filter_notch_gc.png differ diff --git a/figs/filter_notch_xi.png b/figs/filter_notch_xi.png new file mode 100644 index 0000000..8cc2046 Binary files /dev/null and b/figs/filter_notch_xi.png differ diff --git a/figs/weight_first_order.png b/figs/weight_first_order.png new file mode 100644 index 0000000..1159201 Binary files /dev/null and b/figs/weight_first_order.png differ diff --git a/index.html b/index.html index 23be0da..df70045 100644 --- a/index.html +++ b/index.html @@ -3,196 +3,11 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- + -\[ H(s) = \frac{1}{1 + s/\omega_0} \]
-w0 = 2*pi; % [rad/s] ++Parameters: +
+
+Characteristics: +
++Matlab code: +
+w0 = 2*pi; % Cut-off Frequency [rad/s] + +H = 1/(1 + s/w0);
\[ H(s) = \frac{1}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \]
-w0 = 2*pi; % [rad/s] -xi = 0.3; ++Parameters: +
+
+Characteristics: +
++Matlab code: +
+w0 = 2*pi; % Cut-off frequency [rad/s] +xi = 0.3; % Damping Ratio + +H = 1/(1 + 2*xi/w0*s + s^2/w0^2);
+\[ H(s) = \frac{s/\omega_0}{1 + s/\omega_0} \] +
-+Parameters: +
++Characteristics: +
++Matlab code: +
+w0 = 2*pi; % Cut-off frequency [rad/s] + +H = (s/w0)/(1 + s/w0); ++
+
++\[ H(s) = \frac{s^2/\omega_0^2}{1 + 2 \xi / \omega_0 s + s^2/\omega_0^2} \] +
+ ++Parameters: +
++Matlab code: +
+w0 = 2*pi; % [rad/s] +xi = 0.3; + +H = (s^2/w0^2)/(1 + 2*xi/w0*s + s^2/w0^2); ++
+
++\[ H(s) = \left( \frac{s/\omega_0}{1 + s/\omega_0} \right)^n \] +
+ ++Matlab code: +
+w0 = 2*pi; % [rad/s] +n = 3; + +H = ((s/w0)/(1 + s/w0))^n; ++
+
++Parameters: +
++Matlab code: +
+gc = 0.02; +xi = 0.1; +wn = 2*pi; + +H = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); ++
+
++
+n = 4; % Order of the filter +Rp = 3; % Maximum peak-to-peak ripple [dB] +Wp = 2*pi; % passband-edge frequency [rad/s] + +[A,B,C,D] = cheby1(n, Rp, Wp, 'high', 's'); +H = ss(A, B, C, D); ++
+Parameters: +
++Characteristics: +
++Matlab code: +
+a = 0.6; % Amount of phase lead / width of the phase lead / high frequency gain +wc = 2*pi; % Frequency with the maximum phase lead [rad/s] + +H = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); ++
+
++
++Parameters: +
++Characteristics: +
++Matlab code: +
+a = 0.6; % Amount of phase lag / width of the phase lag / high frequency gain +wc = 2*pi; % Frequency with the maximum phase lag [rad/s] + +H = (wc*sqrt(a) + s)/(wc/sqrt(a) + s); ++
+
++
+n = 2; w0 = 2*pi*11; G0 = 1/10; G1 = 1000; Gc = 1/2; -wL = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n; +n = 2; w0 = 2*pi*11; G0 = 1/10; G1 = 1000; Gc = 1/2; +wL = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n; -n = 3; w0 = 2*pi*9; G0 = 10000; G1 = 0.1; Gc = 1/2; -wH = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n; --
n = 4; -w0 = 2*pi; -A = 10; - -a = sqrt(2*A^(2/n) - 1 + 2*A^(1/n)*sqrt(A^(2/n) - 1)); -G = ((1 + s/(w0/a))*(1 + s/(w0*a))/(1 + s/w0)^2)^n; -bodeFig({G}) +n = 3; w0 = 2*pi*9; G0 = 10000; G1 = 0.1; Gc = 1/2; +wH = Gc*(((G1/Gc)^(1/n)/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + (G0/Gc)^(1/n))/(1/w0*sqrt((1-(G0/Gc)^(2/n))/((G1/Gc)^(2/n)-1))*s + 1))^n;
-\[ H(s) = \frac{1 + s/\omega_z}{1 + s/\omega_p}, \quad \omega_z < \omega_p \] -
- -[ ]
Find a nice parametrisation to be able to specify the center frequency and the phase added[ ]
Compute also the change in magnitudeh = 2.0; -wz = 2*pi/h; % [rad/s] -wp = 2*pi*h; % [rad/s] - -H = (1 + s/wz)/(1 + s/wp); --
-\[ H(s) = \frac{1 + s/\omega_z}{1 + s/\omega_p}, \quad \omega_z > \omega_p \] -
- -[ ]
Find a nice parametrisation to be able to specify the center frequency and the phase added[ ]
Compute also the change in magnitudeh = 2.0; -wz = 2*pi*h; % [rad/s] -wp = 2*pi/h; % [rad/s] +w0 = 2*pi; % [rad/s] +A = 1e-2; +M = 5; -H = (1 + s/wz)/(1 + s/wp); +H = (s/sqrt(M) + w0)^2/(s + w0*sqrt(A))^2;
-\[ H(s) = \frac{1 + s/\omega_z}{1 + s/\omega_p} \frac{1 + s/\omega_z}{1 + s/\omega_p}, \quad \omega_z > \omega_p \] -
- -wz1 = 2*pi*1; % [rad/s] -wp1 = 2*pi*0.1; % [rad/s] -wz2 = 2*pi*10; % [rad/s] -wp2 = 2*pi*20; % [rad/s] - -H = (1 + s/wz1)/(1 + s/wp1)*(1 + s/wz2)/(1 + s/wp2); --
w0 = 2*pi; % [rad/s] -A = 1e-2; -M = 5; - -H = (s/sqrt(M) + w0)^2/(s + w0*sqrt(A))^2; --
[ ]
Explain how phase and magnitude combine+Let’s consider a noise \(n\) that is shaped from a white-noise \(\tilde{n}\) with unitary PSD (\(\Phi_\tilde{n}(\omega) = 1\)) using a transfer function \(G(s)\). +The PSD of \(n\) is then: +\[ \Phi_n(\omega) = |G(j\omega)|^2 \Phi_{\tilde{n}}(\omega) = |G(j\omega)|^2 \] +
+ ++The PSD \(\Phi_n(\omega)\) is expressed in \(\text{unit}^2/\text{Hz}\). +
+ ++And the root mean square (RMS) of \(n(t)\) is: +\[ \sigma_n = \sqrt{\int_{0}^{\infty} \Phi_n(\omega) d\omega} \] +
++\[ G(s) = \frac{g_0}{1 + \frac{s}{\omega_c}} \] +
+ +g0 = 1; % Noise Density in unit/sqrt(Hz) +wc = 1; % Cut-Off frequency [rad/s] + +G = g0/(1 + s/wc); + +% Frequency vector [Hz] +freqs = logspace(-3, 3, 1000); + +% PSD of n in [unit^2/Hz] +Phi_n = abs(squeeze(freqresp(G, freqs, 'Hz'))).^2; + +% RMS value of n in [unit, rms] +sigma_n = sqrt(trapz(freqs, Phi_n)) ++
+\[ \sigma = \frac{1}{2} g_0 \sqrt{\omega_c} \] +with: +
++If the cut-off frequency is to be expressed in Hz: +\[ \sigma = \frac{1}{2} g_0 \sqrt{2\pi f_c} = \sqrt{\frac{\pi}{2}} g_0 \sqrt{f_c} \] +
+ + ++Thus, if a sensor is said to have a RMS noise of \(\sigma = 10 nm\ rms\) over a bandwidth of \(\omega_c = 100 rad/s\), we can estimated the noise density of the sensor to be (supposing a first order low pass filter noise shape): +\[ g_0 = \frac{2 \sigma}{\sqrt{\omega_c}} \quad \left[ m/\sqrt{Hz} \right] \] +
+ +2*10e-9/sqrt(100) ++
+2e-09 ++ + +
6*0.5*20e-12*sqrt(2*pi*100) ++
+1.504e-09 ++