commit 9dcf096c70319caeb726b399f069e21ce1e030f5 Author: Thomas Dehaeze Date: Fri Nov 20 09:24:39 2020 +0100 Initial Commit diff --git a/figs/acc_components.png b/figs/acc_components.png new file mode 100644 index 0000000..63ba1a9 Binary files /dev/null and b/figs/acc_components.png differ diff --git a/figs/acc_conclusion.png b/figs/acc_conclusion.png new file mode 100644 index 0000000..48162ac Binary files /dev/null and b/figs/acc_conclusion.png differ diff --git a/figs/acc_intro.png b/figs/acc_intro.png new file mode 100644 index 0000000..0817840 Binary files /dev/null and b/figs/acc_intro.png differ diff --git a/figs/acc_results.png b/figs/acc_results.png new file mode 100644 index 0000000..b8be7d8 Binary files /dev/null and b/figs/acc_results.png differ diff --git a/figs/accuracy_dynamics.png b/figs/accuracy_dynamics.png new file mode 100644 index 0000000..c3a834e Binary files /dev/null and b/figs/accuracy_dynamics.png differ diff --git a/figs/aliasing_above_nyquist.png b/figs/aliasing_above_nyquist.png new file mode 100644 index 0000000..8f43bba Binary files /dev/null and b/figs/aliasing_above_nyquist.png differ diff --git a/figs/aliasing_below_nyquist.png b/figs/aliasing_below_nyquist.png new file mode 100644 index 0000000..e9f59c1 Binary files /dev/null and b/figs/aliasing_below_nyquist.png differ diff --git a/figs/aliasing_budget_phase.png b/figs/aliasing_budget_phase.png new file mode 100644 index 0000000..4dd0248 Binary files /dev/null and b/figs/aliasing_budget_phase.png differ diff --git a/figs/aliasing_budget_table.png b/figs/aliasing_budget_table.png new file mode 100644 index 0000000..68ab9f2 Binary files /dev/null and b/figs/aliasing_budget_table.png differ diff --git a/figs/aliasing_conclusion.png b/figs/aliasing_conclusion.png new file mode 100644 index 0000000..c34ea9a Binary files /dev/null and b/figs/aliasing_conclusion.png differ diff --git a/figs/aliasing_equivalent_delay.png b/figs/aliasing_equivalent_delay.png new file mode 100644 index 0000000..4406566 Binary files /dev/null and b/figs/aliasing_equivalent_delay.png differ diff --git a/figs/aliasing_filter_example.png b/figs/aliasing_filter_example.png new file mode 100644 index 0000000..e7f483f Binary files /dev/null and b/figs/aliasing_filter_example.png differ diff --git a/figs/aliasing_filter_order_bode.png b/figs/aliasing_filter_order_bode.png new file mode 100644 index 0000000..53b091e Binary files /dev/null and b/figs/aliasing_filter_order_bode.png differ diff --git a/figs/aliasing_filter_order_table.png b/figs/aliasing_filter_order_table.png new file mode 100644 index 0000000..517e7a7 Binary files /dev/null and b/figs/aliasing_filter_order_table.png differ diff --git a/figs/aliasing_modeling.png b/figs/aliasing_modeling.png new file mode 100644 index 0000000..ccaddf0 Binary files /dev/null and b/figs/aliasing_modeling.png differ diff --git a/figs/aliasing_poles.png b/figs/aliasing_poles.png new file mode 100644 index 0000000..7312e8b Binary files /dev/null and b/figs/aliasing_poles.png differ diff --git a/figs/aliasing_reduce_phase_lag.png b/figs/aliasing_reduce_phase_lag.png new file mode 100644 index 0000000..d8f5629 Binary files /dev/null and b/figs/aliasing_reduce_phase_lag.png differ diff --git a/figs/aliasing_resonances.png b/figs/aliasing_resonances.png new file mode 100644 index 0000000..d2834c0 Binary files /dev/null and b/figs/aliasing_resonances.png differ diff --git a/figs/aliasing_sensitivity_effect.png b/figs/aliasing_sensitivity_effect.png new file mode 100644 index 0000000..69f03f5 Binary files /dev/null and b/figs/aliasing_sensitivity_effect.png differ diff --git a/figs/aliasing_signals.png b/figs/aliasing_signals.png new file mode 100644 index 0000000..852c015 Binary files /dev/null and b/figs/aliasing_signals.png differ diff --git a/figs/aliasing_system.png b/figs/aliasing_system.png new file mode 100644 index 0000000..e3ba5fd Binary files /dev/null and b/figs/aliasing_system.png differ diff --git a/figs/alising_filter_introduction.png b/figs/alising_filter_introduction.png new file mode 100644 index 0000000..3b81ade Binary files /dev/null and b/figs/alising_filter_introduction.png differ diff --git a/figs/alising_much_above_nyquist.png b/figs/alising_much_above_nyquist.png new file mode 100644 index 0000000..f3edb82 Binary files /dev/null and b/figs/alising_much_above_nyquist.png differ diff --git a/figs/alising_nature.png b/figs/alising_nature.png new file mode 100644 index 0000000..a660f3a Binary files /dev/null and b/figs/alising_nature.png differ diff --git a/figs/asml_chip_manufacturing_loop.png b/figs/asml_chip_manufacturing_loop.png new file mode 100644 index 0000000..04463c0 Binary files /dev/null and b/figs/asml_chip_manufacturing_loop.png differ diff --git a/figs/asml_conclusion.png b/figs/asml_conclusion.png new file mode 100644 index 0000000..09fdef5 Binary files /dev/null and b/figs/asml_conclusion.png differ diff --git a/figs/asml_dual_stage_scanners.png b/figs/asml_dual_stage_scanners.png new file mode 100644 index 0000000..a8dc2fb Binary files /dev/null and b/figs/asml_dual_stage_scanners.png differ diff --git a/figs/asml_euv.png b/figs/asml_euv.png new file mode 100644 index 0000000..a7b9e29 Binary files /dev/null and b/figs/asml_euv.png differ diff --git a/figs/asml_hood_system.png b/figs/asml_hood_system.png new file mode 100644 index 0000000..33e098e Binary files /dev/null and b/figs/asml_hood_system.png differ diff --git a/figs/asml_imaging_process.png b/figs/asml_imaging_process.png new file mode 100644 index 0000000..b8a9026 Binary files /dev/null and b/figs/asml_imaging_process.png differ diff --git a/figs/asml_immersion.png b/figs/asml_immersion.png new file mode 100644 index 0000000..9823de6 Binary files /dev/null and b/figs/asml_immersion.png differ diff --git a/figs/asml_machine_layout.png b/figs/asml_machine_layout.png new file mode 100644 index 0000000..1aa051e Binary files /dev/null and b/figs/asml_machine_layout.png differ diff --git a/figs/asml_machine_layout_bis.png b/figs/asml_machine_layout_bis.png new file mode 100644 index 0000000..c335b93 Binary files /dev/null and b/figs/asml_machine_layout_bis.png differ diff --git a/figs/asml_na_euv.png b/figs/asml_na_euv.png new file mode 100644 index 0000000..9f1dc6c Binary files /dev/null and b/figs/asml_na_euv.png differ diff --git a/figs/asml_reflection_angle.png b/figs/asml_reflection_angle.png new file mode 100644 index 0000000..be191e8 Binary files /dev/null and b/figs/asml_reflection_angle.png differ diff --git a/figs/asml_stepper_to_scanner.png b/figs/asml_stepper_to_scanner.png new file mode 100644 index 0000000..bebf835 Binary files /dev/null and b/figs/asml_stepper_to_scanner.png differ diff --git a/figs/ball_bearing.png b/figs/ball_bearing.png new file mode 100644 index 0000000..9cfcd6d Binary files /dev/null and b/figs/ball_bearing.png differ diff --git a/figs/ball_joint.png b/figs/ball_joint.png new file mode 100644 index 0000000..949d46b Binary files /dev/null and b/figs/ball_joint.png differ diff --git a/figs/buckling.png b/figs/buckling.png new file mode 100644 index 0000000..c4386a2 Binary files /dev/null and b/figs/buckling.png differ diff --git a/figs/case_1.png b/figs/case_1.png new file mode 100644 index 0000000..513be71 Binary files /dev/null and b/figs/case_1.png differ diff --git a/figs/case_1_leaf_springs.png b/figs/case_1_leaf_springs.png new file mode 100644 index 0000000..d89f462 Binary files /dev/null and b/figs/case_1_leaf_springs.png differ diff --git a/figs/case_1dof_rotation.png b/figs/case_1dof_rotation.png new file mode 100644 index 0000000..fd4d73f Binary files /dev/null and b/figs/case_1dof_rotation.png differ diff --git a/figs/closed_box.png b/figs/closed_box.png new file mode 100644 index 0000000..de58478 Binary files /dev/null and b/figs/closed_box.png differ diff --git a/figs/compliant_1dof.png b/figs/compliant_1dof.png new file mode 100644 index 0000000..c42de06 Binary files /dev/null and b/figs/compliant_1dof.png differ diff --git a/figs/compliant_example_1.png b/figs/compliant_example_1.png new file mode 100644 index 0000000..aeb7dc1 Binary files /dev/null and b/figs/compliant_example_1.png differ diff --git a/figs/constraining_dof_conventional.png b/figs/constraining_dof_conventional.png new file mode 100644 index 0000000..60f4912 Binary files /dev/null and b/figs/constraining_dof_conventional.png differ diff --git a/figs/flexure_control_concept.png b/figs/flexure_control_concept.png new file mode 100644 index 0000000..27e290c Binary files /dev/null and b/figs/flexure_control_concept.png differ diff --git a/figs/flexure_current_control_results.png b/figs/flexure_current_control_results.png new file mode 100644 index 0000000..0aeb900 Binary files /dev/null and b/figs/flexure_current_control_results.png differ diff --git a/figs/flexure_delta_robot.png b/figs/flexure_delta_robot.png new file mode 100644 index 0000000..99a9121 Binary files /dev/null and b/figs/flexure_delta_robot.png differ diff --git a/figs/flexure_delta_robot_schematic.png b/figs/flexure_delta_robot_schematic.png new file mode 100644 index 0000000..8c14d0d Binary files /dev/null and b/figs/flexure_delta_robot_schematic.png differ diff --git a/figs/flexure_dynamics_errors.png b/figs/flexure_dynamics_errors.png new file mode 100644 index 0000000..c5dcce1 Binary files /dev/null and b/figs/flexure_dynamics_errors.png differ diff --git a/figs/flexure_electronics_board.png b/figs/flexure_electronics_board.png new file mode 100644 index 0000000..c8bd27d Binary files /dev/null and b/figs/flexure_electronics_board.png differ diff --git a/figs/flexure_equations.png b/figs/flexure_equations.png new file mode 100644 index 0000000..29cde4c Binary files /dev/null and b/figs/flexure_equations.png differ diff --git a/figs/flexure_identification.png b/figs/flexure_identification.png new file mode 100644 index 0000000..5d40d38 Binary files /dev/null and b/figs/flexure_identification.png differ diff --git a/figs/flexure_identification_coupling.png b/figs/flexure_identification_coupling.png new file mode 100644 index 0000000..ede6ed1 Binary files /dev/null and b/figs/flexure_identification_coupling.png differ diff --git a/figs/flexure_pivots.png b/figs/flexure_pivots.png new file mode 100644 index 0000000..dc94bd1 Binary files /dev/null and b/figs/flexure_pivots.png differ diff --git a/figs/flexure_results.png b/figs/flexure_results.png new file mode 100644 index 0000000..e6799eb Binary files /dev/null and b/figs/flexure_results.png differ diff --git a/figs/flexure_sensors.png b/figs/flexure_sensors.png new file mode 100644 index 0000000..6aaaf91 Binary files /dev/null and b/figs/flexure_sensors.png differ diff --git a/figs/flexure_steps.png b/figs/flexure_steps.png new file mode 100644 index 0000000..be62de1 Binary files /dev/null and b/figs/flexure_steps.png differ diff --git a/figs/focus_background.png b/figs/focus_background.png new file mode 100644 index 0000000..37b55e8 Binary files /dev/null and b/figs/focus_background.png differ diff --git a/figs/focus_conclusion.png b/figs/focus_conclusion.png new file mode 100644 index 0000000..7b5e358 Binary files /dev/null and b/figs/focus_conclusion.png differ diff --git a/figs/focus_control.png b/figs/focus_control.png new file mode 100644 index 0000000..e176ada Binary files /dev/null and b/figs/focus_control.png differ diff --git a/figs/focus_mechanical_system.png b/figs/focus_mechanical_system.png new file mode 100644 index 0000000..fde2f00 Binary files /dev/null and b/figs/focus_mechanical_system.png differ diff --git a/figs/focus_optical_design.png b/figs/focus_optical_design.png new file mode 100644 index 0000000..2990295 Binary files /dev/null and b/figs/focus_optical_design.png differ diff --git a/figs/focus_results.png b/figs/focus_results.png new file mode 100644 index 0000000..ff62f1d Binary files /dev/null and b/figs/focus_results.png differ diff --git a/figs/folded_leaf_springs.png b/figs/folded_leaf_springs.png new file mode 100644 index 0000000..db7c3c3 Binary files /dev/null and b/figs/folded_leaf_springs.png differ diff --git a/figs/frf_direction_excitation.png b/figs/frf_direction_excitation.png new file mode 100644 index 0000000..0d0420b Binary files /dev/null and b/figs/frf_direction_excitation.png differ diff --git a/figs/frf_experiment.png b/figs/frf_experiment.png new file mode 100644 index 0000000..4e868fc Binary files /dev/null and b/figs/frf_experiment.png differ diff --git a/figs/frf_experiment_conclusion.png b/figs/frf_experiment_conclusion.png new file mode 100644 index 0000000..0fd930c Binary files /dev/null and b/figs/frf_experiment_conclusion.png differ diff --git a/figs/frf_experiment_non_optimized.png b/figs/frf_experiment_non_optimized.png new file mode 100644 index 0000000..5f769e9 Binary files /dev/null and b/figs/frf_experiment_non_optimized.png differ diff --git a/figs/frf_experiment_optimized.png b/figs/frf_experiment_optimized.png new file mode 100644 index 0000000..50a468b Binary files /dev/null and b/figs/frf_experiment_optimized.png differ diff --git a/figs/frf_introduction.png b/figs/frf_introduction.png new file mode 100644 index 0000000..0f25a64 Binary files /dev/null and b/figs/frf_introduction.png differ diff --git a/figs/frf_mimo.png b/figs/frf_mimo.png new file mode 100644 index 0000000..7fc87c6 Binary files /dev/null and b/figs/frf_mimo.png differ diff --git a/figs/frf_optimization_problem.png b/figs/frf_optimization_problem.png new file mode 100644 index 0000000..30f6638 Binary files /dev/null and b/figs/frf_optimization_problem.png differ diff --git a/figs/frf_optimization_steps.png b/figs/frf_optimization_steps.png new file mode 100644 index 0000000..c1845f3 Binary files /dev/null and b/figs/frf_optimization_steps.png differ diff --git a/figs/galva_background.png b/figs/galva_background.png new file mode 100644 index 0000000..dd23b7e Binary files /dev/null and b/figs/galva_background.png differ diff --git a/figs/galva_ff_conclusion.png b/figs/galva_ff_conclusion.png new file mode 100644 index 0000000..f4e7788 Binary files /dev/null and b/figs/galva_ff_conclusion.png differ diff --git a/figs/galva_ff_control.png b/figs/galva_ff_control.png new file mode 100644 index 0000000..f4a4ce4 Binary files /dev/null and b/figs/galva_ff_control.png differ diff --git a/figs/galva_ff_dynamics.png b/figs/galva_ff_dynamics.png new file mode 100644 index 0000000..d6eb2d1 Binary files /dev/null and b/figs/galva_ff_dynamics.png differ diff --git a/figs/galva_ff_experiment.png b/figs/galva_ff_experiment.png new file mode 100644 index 0000000..1971643 Binary files /dev/null and b/figs/galva_ff_experiment.png differ diff --git a/figs/galva_ff_feedforward_architecture.png b/figs/galva_ff_feedforward_architecture.png new file mode 100644 index 0000000..6c2c369 Binary files /dev/null and b/figs/galva_ff_feedforward_architecture.png differ diff --git a/figs/galva_ff_high_tracking.png b/figs/galva_ff_high_tracking.png new file mode 100644 index 0000000..2136157 Binary files /dev/null and b/figs/galva_ff_high_tracking.png differ diff --git a/figs/galva_ff_low_tracking.png b/figs/galva_ff_low_tracking.png new file mode 100644 index 0000000..0b83d47 Binary files /dev/null and b/figs/galva_ff_low_tracking.png differ diff --git a/figs/galva_ff_multi_dof.png b/figs/galva_ff_multi_dof.png new file mode 100644 index 0000000..879dc79 Binary files /dev/null and b/figs/galva_ff_multi_dof.png differ diff --git a/figs/galva_principle.png b/figs/galva_principle.png new file mode 100644 index 0000000..8c4762b Binary files /dev/null and b/figs/galva_principle.png differ diff --git a/figs/galva_prototype.png b/figs/galva_prototype.png new file mode 100644 index 0000000..2ca79d4 Binary files /dev/null and b/figs/galva_prototype.png differ diff --git a/figs/galva_schematic.png b/figs/galva_schematic.png new file mode 100644 index 0000000..5a0fa2a Binary files /dev/null and b/figs/galva_schematic.png differ diff --git a/figs/isolation_conclusion.png b/figs/isolation_conclusion.png new file mode 100644 index 0000000..adc7be2 Binary files /dev/null and b/figs/isolation_conclusion.png differ diff --git a/figs/isolation_disturbances.png b/figs/isolation_disturbances.png new file mode 100644 index 0000000..ef6326e Binary files /dev/null and b/figs/isolation_disturbances.png differ diff --git a/figs/isolation_find_contact.png b/figs/isolation_find_contact.png new file mode 100644 index 0000000..2f602e2 Binary files /dev/null and b/figs/isolation_find_contact.png differ diff --git a/figs/isolation_improved.png b/figs/isolation_improved.png new file mode 100644 index 0000000..e9c1b9f Binary files /dev/null and b/figs/isolation_improved.png differ diff --git a/figs/isolation_localization_problem.png b/figs/isolation_localization_problem.png new file mode 100644 index 0000000..3d2ad87 Binary files /dev/null and b/figs/isolation_localization_problem.png differ diff --git a/figs/isolation_nominal_disturbed_systems.png b/figs/isolation_nominal_disturbed_systems.png new file mode 100644 index 0000000..7b9c33b Binary files /dev/null and b/figs/isolation_nominal_disturbed_systems.png differ diff --git a/figs/isolation_simulation.png b/figs/isolation_simulation.png new file mode 100644 index 0000000..5a19e21 Binary files /dev/null and b/figs/isolation_simulation.png differ diff --git a/figs/isolation_simulation_results.png b/figs/isolation_simulation_results.png new file mode 100644 index 0000000..6eae542 Binary files /dev/null and b/figs/isolation_simulation_results.png differ diff --git a/figs/laser_scan_background.png b/figs/laser_scan_background.png new file mode 100644 index 0000000..4d45c61 Binary files /dev/null and b/figs/laser_scan_background.png differ diff --git a/figs/leaf_springs.png b/figs/leaf_springs.png new file mode 100644 index 0000000..fbb2617 Binary files /dev/null and b/figs/leaf_springs.png differ diff --git a/figs/linear_bearing_leafs.png b/figs/linear_bearing_leafs.png new file mode 100644 index 0000000..579aa60 Binary files /dev/null and b/figs/linear_bearing_leafs.png differ diff --git a/figs/machine_background.png b/figs/machine_background.png new file mode 100644 index 0000000..4066963 Binary files /dev/null and b/figs/machine_background.png differ diff --git a/figs/machine_basis_functions.png b/figs/machine_basis_functions.png new file mode 100644 index 0000000..6334797 Binary files /dev/null and b/figs/machine_basis_functions.png differ diff --git a/figs/machine_conclusion.png b/figs/machine_conclusion.png new file mode 100644 index 0000000..bf3769e Binary files /dev/null and b/figs/machine_conclusion.png differ diff --git a/figs/machine_experiment_setup.png b/figs/machine_experiment_setup.png new file mode 100644 index 0000000..9c88654 Binary files /dev/null and b/figs/machine_experiment_setup.png differ diff --git a/figs/machine_ilc.png b/figs/machine_ilc.png new file mode 100644 index 0000000..45532f3 Binary files /dev/null and b/figs/machine_ilc.png differ diff --git a/figs/machine_physical_model.png b/figs/machine_physical_model.png new file mode 100644 index 0000000..7dc6663 Binary files /dev/null and b/figs/machine_physical_model.png differ diff --git a/figs/machine_results_1.png b/figs/machine_results_1.png new file mode 100644 index 0000000..685cbd3 Binary files /dev/null and b/figs/machine_results_1.png differ diff --git a/figs/machine_results_2.png b/figs/machine_results_2.png new file mode 100644 index 0000000..add5698 Binary files /dev/null and b/figs/machine_results_2.png differ diff --git a/figs/machine_schematic.png b/figs/machine_schematic.png new file mode 100644 index 0000000..4460d91 Binary files /dev/null and b/figs/machine_schematic.png differ diff --git a/figs/machine_solution.png b/figs/machine_solution.png new file mode 100644 index 0000000..56a0a0d Binary files /dev/null and b/figs/machine_solution.png differ diff --git a/figs/magn_bear_conclusion.png b/figs/magn_bear_conclusion.png new file mode 100644 index 0000000..f92a478 Binary files /dev/null and b/figs/magn_bear_conclusion.png differ diff --git a/figs/magn_bear_delay.png b/figs/magn_bear_delay.png new file mode 100644 index 0000000..2bc6245 Binary files /dev/null and b/figs/magn_bear_delay.png differ diff --git a/figs/magn_bear_distur.png b/figs/magn_bear_distur.png new file mode 100644 index 0000000..dff28a4 Binary files /dev/null and b/figs/magn_bear_distur.png differ diff --git a/figs/magn_bear_intro.png b/figs/magn_bear_intro.png new file mode 100644 index 0000000..0a3a583 Binary files /dev/null and b/figs/magn_bear_intro.png differ diff --git a/figs/magn_bear_results.png b/figs/magn_bear_results.png new file mode 100644 index 0000000..981ccee Binary files /dev/null and b/figs/magn_bear_results.png differ diff --git a/figs/magn_bear_setup.png b/figs/magn_bear_setup.png new file mode 100644 index 0000000..d3d51f6 Binary files /dev/null and b/figs/magn_bear_setup.png differ diff --git a/figs/magn_controller.png b/figs/magn_controller.png new file mode 100644 index 0000000..448574a Binary files /dev/null and b/figs/magn_controller.png differ diff --git a/figs/mimo_conclusion.png b/figs/mimo_conclusion.png new file mode 100644 index 0000000..d9aa385 Binary files /dev/null and b/figs/mimo_conclusion.png differ diff --git a/figs/mimo_example_bode.png b/figs/mimo_example_bode.png new file mode 100644 index 0000000..26eb36b Binary files /dev/null and b/figs/mimo_example_bode.png differ diff --git a/figs/mimo_example_sensitivity.png b/figs/mimo_example_sensitivity.png new file mode 100644 index 0000000..fcae0ed Binary files /dev/null and b/figs/mimo_example_sensitivity.png differ diff --git a/figs/mimo_example_system.png b/figs/mimo_example_system.png new file mode 100644 index 0000000..476d059 Binary files /dev/null and b/figs/mimo_example_system.png differ diff --git a/figs/mimo_flexible_modes.png b/figs/mimo_flexible_modes.png new file mode 100644 index 0000000..26c90bd Binary files /dev/null and b/figs/mimo_flexible_modes.png differ diff --git a/figs/mimo_flexible_modes_coupling.png b/figs/mimo_flexible_modes_coupling.png new file mode 100644 index 0000000..f235409 Binary files /dev/null and b/figs/mimo_flexible_modes_coupling.png differ diff --git a/figs/mimo_results.png b/figs/mimo_results.png new file mode 100644 index 0000000..ff09639 Binary files /dev/null and b/figs/mimo_results.png differ diff --git a/figs/mimo_sensitivity_functions.png b/figs/mimo_sensitivity_functions.png new file mode 100644 index 0000000..507f4ff Binary files /dev/null and b/figs/mimo_sensitivity_functions.png differ diff --git a/figs/mimo_sensitivity_performance.png b/figs/mimo_sensitivity_performance.png new file mode 100644 index 0000000..048d227 Binary files /dev/null and b/figs/mimo_sensitivity_performance.png differ diff --git a/figs/mimoopt_3d_opti.png b/figs/mimoopt_3d_opti.png new file mode 100644 index 0000000..73ace3e Binary files /dev/null and b/figs/mimoopt_3d_opti.png differ diff --git a/figs/mimoopt_6dof_stage.png b/figs/mimoopt_6dof_stage.png new file mode 100644 index 0000000..934053f Binary files /dev/null and b/figs/mimoopt_6dof_stage.png differ diff --git a/figs/mimoopt_case.png b/figs/mimoopt_case.png new file mode 100644 index 0000000..06f57d1 Binary files /dev/null and b/figs/mimoopt_case.png differ diff --git a/figs/mimoopt_frf_identification.png b/figs/mimoopt_frf_identification.png new file mode 100644 index 0000000..f06ef92 Binary files /dev/null and b/figs/mimoopt_frf_identification.png differ diff --git a/figs/mimoopt_performance.png b/figs/mimoopt_performance.png new file mode 100644 index 0000000..fe9743b Binary files /dev/null and b/figs/mimoopt_performance.png differ diff --git a/figs/mimoopt_process.png b/figs/mimoopt_process.png new file mode 100644 index 0000000..b23b36a Binary files /dev/null and b/figs/mimoopt_process.png differ diff --git a/figs/open_close_profil_torsion_stiffness.png b/figs/open_close_profil_torsion_stiffness.png new file mode 100644 index 0000000..56b351b Binary files /dev/null and b/figs/open_close_profil_torsion_stiffness.png differ diff --git a/figs/parallel_guiding.png b/figs/parallel_guiding.png new file mode 100644 index 0000000..a57135b Binary files /dev/null and b/figs/parallel_guiding.png differ diff --git a/figs/piezo_stepper_actuator.png b/figs/piezo_stepper_actuator.png new file mode 100644 index 0000000..3314eae Binary files /dev/null and b/figs/piezo_stepper_actuator.png differ diff --git a/figs/play_free_parallel_stage.png b/figs/play_free_parallel_stage.png new file mode 100644 index 0000000..adb4de2 Binary files /dev/null and b/figs/play_free_parallel_stage.png differ diff --git a/figs/play_free_parallel_stage_solution.png b/figs/play_free_parallel_stage_solution.png new file mode 100644 index 0000000..17e1a1a Binary files /dev/null and b/figs/play_free_parallel_stage_solution.png differ diff --git a/figs/position_resolution.png b/figs/position_resolution.png new file mode 100644 index 0000000..de51516 Binary files /dev/null and b/figs/position_resolution.png differ diff --git a/figs/position_stability.png b/figs/position_stability.png new file mode 100644 index 0000000..551e9ae Binary files /dev/null and b/figs/position_stability.png differ diff --git a/figs/position_terminology.png b/figs/position_terminology.png new file mode 100644 index 0000000..8c1abb0 Binary files /dev/null and b/figs/position_terminology.png differ diff --git a/figs/position_uncertainty.png b/figs/position_uncertainty.png new file mode 100644 index 0000000..2b5dfe2 Binary files /dev/null and b/figs/position_uncertainty.png differ diff --git a/figs/prec_6dof_abbe.png b/figs/prec_6dof_abbe.png new file mode 100644 index 0000000..aadb681 Binary files /dev/null and b/figs/prec_6dof_abbe.png differ diff --git a/figs/prec_abbe_compensation.png b/figs/prec_abbe_compensation.png new file mode 100644 index 0000000..201d8f2 Binary files /dev/null and b/figs/prec_abbe_compensation.png differ diff --git a/figs/prec_abbe_min.png b/figs/prec_abbe_min.png new file mode 100644 index 0000000..15ac97f Binary files /dev/null and b/figs/prec_abbe_min.png differ diff --git a/figs/prec_cmm.png b/figs/prec_cmm.png new file mode 100644 index 0000000..9cb3cd8 Binary files /dev/null and b/figs/prec_cmm.png differ diff --git a/figs/prec_cmm_nano_cmm.png b/figs/prec_cmm_nano_cmm.png new file mode 100644 index 0000000..05fe78b Binary files /dev/null and b/figs/prec_cmm_nano_cmm.png differ diff --git a/figs/prec_comp_guid.png b/figs/prec_comp_guid.png new file mode 100644 index 0000000..1f32661 Binary files /dev/null and b/figs/prec_comp_guid.png differ diff --git a/figs/prec_comp_guid_bis.png b/figs/prec_comp_guid_bis.png new file mode 100644 index 0000000..e8410ca Binary files /dev/null and b/figs/prec_comp_guid_bis.png differ diff --git a/figs/prec_conclusion.png b/figs/prec_conclusion.png new file mode 100644 index 0000000..9b16ac5 Binary files /dev/null and b/figs/prec_conclusion.png differ diff --git a/figs/prec_drive_concept.png b/figs/prec_drive_concept.png new file mode 100644 index 0000000..c05b7f2 Binary files /dev/null and b/figs/prec_drive_concept.png differ diff --git a/figs/prec_interferometers.png b/figs/prec_interferometers.png new file mode 100644 index 0000000..3a1922f Binary files /dev/null and b/figs/prec_interferometers.png differ diff --git a/figs/prec_inverse_kin.png b/figs/prec_inverse_kin.png new file mode 100644 index 0000000..2f57d5c Binary files /dev/null and b/figs/prec_inverse_kin.png differ diff --git a/figs/prec_inverse_kin_scan.png b/figs/prec_inverse_kin_scan.png new file mode 100644 index 0000000..26d1df1 Binary files /dev/null and b/figs/prec_inverse_kin_scan.png differ diff --git a/figs/prec_inverse_meas_head.png b/figs/prec_inverse_meas_head.png new file mode 100644 index 0000000..b5b67a1 Binary files /dev/null and b/figs/prec_inverse_meas_head.png differ diff --git a/figs/prec_meas_large_mirrors.png b/figs/prec_meas_large_mirrors.png new file mode 100644 index 0000000..9daf25e Binary files /dev/null and b/figs/prec_meas_large_mirrors.png differ diff --git a/figs/prec_mechanics.png b/figs/prec_mechanics.png new file mode 100644 index 0000000..310affc Binary files /dev/null and b/figs/prec_mechanics.png differ diff --git a/figs/prec_nano_cmm_concept.png b/figs/prec_nano_cmm_concept.png new file mode 100644 index 0000000..6918089 Binary files /dev/null and b/figs/prec_nano_cmm_concept.png differ diff --git a/figs/prec_nano_how_to.png b/figs/prec_nano_how_to.png new file mode 100644 index 0000000..a6fe4b0 Binary files /dev/null and b/figs/prec_nano_how_to.png differ diff --git a/figs/prec_practical_6dof.png b/figs/prec_practical_6dof.png new file mode 100644 index 0000000..da4e2ae Binary files /dev/null and b/figs/prec_practical_6dof.png differ diff --git a/figs/prec_results_meas.png b/figs/prec_results_meas.png new file mode 100644 index 0000000..1f7f320 Binary files /dev/null and b/figs/prec_results_meas.png differ diff --git a/figs/prec_results_pico.png b/figs/prec_results_pico.png new file mode 100644 index 0000000..acc9356 Binary files /dev/null and b/figs/prec_results_pico.png differ diff --git a/figs/prec_tilt_corection.png b/figs/prec_tilt_corection.png new file mode 100644 index 0000000..811ba85 Binary files /dev/null and b/figs/prec_tilt_corection.png differ diff --git a/figs/prec_tilt_corection_bis.png b/figs/prec_tilt_corection_bis.png new file mode 100644 index 0000000..92c7189 Binary files /dev/null and b/figs/prec_tilt_corection_bis.png differ diff --git a/figs/prec_vacuum_cham.png b/figs/prec_vacuum_cham.png new file mode 100644 index 0000000..5bfe732 Binary files /dev/null and b/figs/prec_vacuum_cham.png differ diff --git a/figs/predictability.png b/figs/predictability.png new file mode 100644 index 0000000..2c0dca9 Binary files /dev/null and b/figs/predictability.png differ diff --git a/figs/reinforced_leaf_springs.png b/figs/reinforced_leaf_springs.png new file mode 100644 index 0000000..fce29bd Binary files /dev/null and b/figs/reinforced_leaf_springs.png differ diff --git a/figs/resolution_stability.png b/figs/resolution_stability.png new file mode 100644 index 0000000..c78ab35 Binary files /dev/null and b/figs/resolution_stability.png differ diff --git a/figs/roller_bearing.png b/figs/roller_bearing.png new file mode 100644 index 0000000..6563052 Binary files /dev/null and b/figs/roller_bearing.png differ diff --git a/figs/roller_rail_guide.png b/figs/roller_rail_guide.png new file mode 100644 index 0000000..1c5aa66 Binary files /dev/null and b/figs/roller_rail_guide.png differ diff --git a/figs/rotation_leaf_springs.png b/figs/rotation_leaf_springs.png new file mode 100644 index 0000000..e03215e Binary files /dev/null and b/figs/rotation_leaf_springs.png differ diff --git a/figs/stiffness_friction.png b/figs/stiffness_friction.png new file mode 100644 index 0000000..226b651 Binary files /dev/null and b/figs/stiffness_friction.png differ diff --git a/figs/thin_plate_torsion.png b/figs/thin_plate_torsion.png new file mode 100644 index 0000000..0245c43 Binary files /dev/null and b/figs/thin_plate_torsion.png differ diff --git a/figs/torsion_stiffness_box_double_triangle.png b/figs/torsion_stiffness_box_double_triangle.png new file mode 100644 index 0000000..0e4d08d Binary files /dev/null and b/figs/torsion_stiffness_box_double_triangle.png differ diff --git a/figs/twing_fdi.png b/figs/twing_fdi.png new file mode 100644 index 0000000..79a7685 Binary files /dev/null and b/figs/twing_fdi.png differ diff --git a/figs/twings_fdi_test.png b/figs/twings_fdi_test.png new file mode 100644 index 0000000..1dc2a16 Binary files /dev/null and b/figs/twings_fdi_test.png differ diff --git a/figs/twins_motivation.png b/figs/twins_motivation.png new file mode 100644 index 0000000..7631d55 Binary files /dev/null and b/figs/twins_motivation.png differ diff --git a/figs/twins_null_space_fdi.png b/figs/twins_null_space_fdi.png new file mode 100644 index 0000000..cccb185 Binary files /dev/null and b/figs/twins_null_space_fdi.png differ diff --git a/figs/twins_objectives.png b/figs/twins_objectives.png new file mode 100644 index 0000000..f50c851 Binary files /dev/null and b/figs/twins_objectives.png differ diff --git a/figs/twins_predictive_maintenance.png b/figs/twins_predictive_maintenance.png new file mode 100644 index 0000000..b94abb2 Binary files /dev/null and b/figs/twins_predictive_maintenance.png differ diff --git a/figs/twins_predictive_maintenance_bis.png b/figs/twins_predictive_maintenance_bis.png new file mode 100644 index 0000000..277dea5 Binary files /dev/null and b/figs/twins_predictive_maintenance_bis.png differ diff --git a/figs/twins_predictive_maintenance_ter.png b/figs/twins_predictive_maintenance_ter.png new file mode 100644 index 0000000..cc739b3 Binary files /dev/null and b/figs/twins_predictive_maintenance_ter.png differ diff --git a/figs/twins_results_fdi.png b/figs/twins_results_fdi.png new file mode 100644 index 0000000..9dbbdae Binary files /dev/null and b/figs/twins_results_fdi.png differ diff --git a/figs/twins_roadmap.png b/figs/twins_roadmap.png new file mode 100644 index 0000000..ef582c4 Binary files /dev/null and b/figs/twins_roadmap.png differ diff --git a/figs/twins_roadmap_bis.png b/figs/twins_roadmap_bis.png new file mode 100644 index 0000000..b201fd9 Binary files /dev/null and b/figs/twins_roadmap_bis.png differ diff --git a/figs/vertical_stage_compliant.png b/figs/vertical_stage_compliant.png new file mode 100644 index 0000000..d139a16 Binary files /dev/null and b/figs/vertical_stage_compliant.png differ diff --git a/figs/vertical_stage_leafs.png b/figs/vertical_stage_leafs.png new file mode 100644 index 0000000..909553c Binary files /dev/null and b/figs/vertical_stage_leafs.png differ diff --git a/figs/x_y_rz_leafs.png b/figs/x_y_rz_leafs.png new file mode 100644 index 0000000..b235be8 Binary files /dev/null and b/figs/x_y_rz_leafs.png differ diff --git a/figs/x_y_rz_stage.png b/figs/x_y_rz_stage.png new file mode 100644 index 0000000..c368fd0 Binary files /dev/null and b/figs/x_y_rz_stage.png differ diff --git a/figs/xyRz_positioning_challenge.png b/figs/xyRz_positioning_challenge.png new file mode 100644 index 0000000..009c171 Binary files /dev/null and b/figs/xyRz_positioning_challenge.png differ diff --git a/figs/z_stage_triangles.png b/figs/z_stage_triangles.png new file mode 100644 index 0000000..7485407 Binary files /dev/null and b/figs/z_stage_triangles.png differ diff --git a/notes.html b/notes.html new file mode 100644 index 0000000..7b850d2 --- /dev/null +++ b/notes.html @@ -0,0 +1,2839 @@ + + + + + + +EUSPEN + + + + + + + + +
+ UP + | + HOME +
+

EUSPEN

+
+

Table of Contents

+
+ +
+
+ +
+

1 Tutorial: Design concepts for sub-micrometer positioning   @huub_janssen

+
+
+
+

1.1 Positioning Terminology

+
+
    +
  • Accuracy: +Accuracy describes how close the mean result is to the reference value. (Figure 1)
  • +
  • Repeatability: +Repeatability describes the variation between results. (Figure 1)
  • +
  • Resolution: +The resolution of a system is equal to the smallest incremental step that can be made (Figure 2)
  • +
  • Stability: +The stability of a system is the maximum deviation from a constant reference value over time. +The stability is always related to the time frame taken into account. (Figure 3)
  • +
+ + +
+

position_terminology.png +

+

Figure 1: Accuracy and Repeatability

+
+ + +
+

position_resolution.png +

+

Figure 2: Position Resolution

+
+ + +
+

position_stability.png +

+

Figure 3: Position Stability

+
+
+
+ +
+

1.2 Principles of accuracy

+
+

+Limited stiffness, play and friction will induce an hysteresis for a positioning system as shown in Figure 4. +

+ +

+The hysteresis can actually help estimating the play and friction present in the system. +

+ + +
+

stiffness_friction.png +

+

Figure 4: Stiffness, play and Friction

+
+ +

+Ways to make the hysteresis smaller: +

+
    +
  • avoid play (=> use compliant elements)
  • +
  • minimize friction
  • +
  • use high stiffness
  • +
+ +

+The position uncertainty of a system can be estimated as follow (Figure 5): +

+\begin{equation} + \text{Position Uncertainty} = \text{play} + 2 \times \text{Virtual Play} +\end{equation} +

+where the virtual play can be estimated as follow: +

+\begin{equation} + \text{Virtual Play} = \frac{\text{Friction Force}}{\text{Actuator Stiffness}} = \frac{F_w}{c} +\end{equation} + + +
+

position_uncertainty.png +

+

Figure 5: Hysterestis, play and virtual play

+
+ +

+When considering dynamics, the goal is to make the first resonance frequency much higher than the frequency of the wanted motion. +Thus, the general recommendation is then to minimize mass and to increase stiffness. +

+ +

+Moreover, we generally want things to be predictable: +

+
    +
  • constant, preferably no friction. +Note that it is very difficult to make a system with constant friction in practice, so better make a system with no friction.
  • +
  • no play
  • +
  • high stiffness
  • +
  • low pass
  • +
+
+
+ +
+

1.3 Case 1 - Estimate the virtual play

+
+

+Estimate the virtual play of the system in Figure 6 with following characteristics: +

+
    +
  • Payload: \(m = 20\,kg\)
  • +
  • Friction coefficient in drive direction: \(f = 0.05\)
  • +
  • Table stroke: \(L = 300\,mm\)
  • +
  • Screw spindle inner diameter: \(d = 8\, mm\)
  • +
  • Spindle Material: Stainless steel
  • +
+ + +
+

case_1.png +

+

Figure 6: Studied system for “Case 1”

+
+ +

+First the friction force can be calculated as the vertical mass times the friction coefficient: +

+\begin{equation} + F_w = (mg) f +\end{equation} + +

+Then, the axial stiffness of the screw spindle is computed: +

+\begin{equation} + c = \frac{A}{L} E +\end{equation} +

+with: +

+
    +
  • \(A = \pi d^2\) is the screw section area
  • +
  • \(L = 300\,mm\) is the screw length
  • +
  • \(E\) is the Young modulus of stainless steel
  • +
+ +

+And finally: +

+\begin{equation} + \text{Virtual Play} = \frac{F_w}{c} \approx 0.6\,\mu m +\end{equation} +
+
+ +
+

1.4 Conventional elements for constraining DoFs

+
+

+There exist many conventional elements for constraining DoFs. +Some of them are: +

+
    +
  • Struts with ball joint: 1DoF constrained (Figure 7)
  • +
  • Ball bearing: 5DoF constrained (Figure 8)
  • +
  • Guide with roller bearing: 4DoF constrained (Figure 9)
  • +
  • Roller rail guide: 5DoF constrained (Figure 10)
  • +
+ + +
+

ball_joint.png +

+

Figure 7: Ball Joint

+
+ + +
+

ball_bearing.png +

+

Figure 8: Ball Bearing

+
+ + +
+

roller_bearing.png +

+

Figure 9: Roller Bearing

+
+ + +
+

roller_rail_guide.png +

+

Figure 10: Roller Rail Guide

+
+
+
+ +
+

1.5 Compliant elements for constraining DoFs

+
+
+
+

1.5.1 Basic leaf springs and folded leaf springs

+
+

+An example of a complaint element is shown in Figure 11. +

+ + +
+

compliant_1dof.png +

+

Figure 11: Example of 1dof constrained compliant element

+
+ +

+Other types of compliant elements include: +

+
    +
  • Leaf spring: constrains 3 dof (Figure 12)
  • +
  • Folded leaf spring: constrains only 1dof (Figure 13) +These are generally used in combination with other folded leaf springs.
  • +
  • Flexure pivots: constrains 5 dofs (Figure 14)
  • +
+ + +
+

leaf_springs.png +

+

Figure 12: Leaf springs

+
+ + +
+

folded_leaf_springs.png +

+

Figure 13: Folded Leaf springs

+
+ + +
+

flexure_pivots.png +

+

Figure 14: Flexure Pivots (5dof constrained)

+
+
+
+ +
+

1.5.2 1dof Parallel Guiding

+
+

+Parallel guiding can be made using two leaf springs (Figure 15): +

+
    +
  • 2 parallel leaf springs
  • +
  • Force actuator in center of parallelism (middle of the leaf springs) to avoid coupled rotation
  • +
  • +Sag in vertical direction as a function as the horizontal displacement. +This sag is predictible and reproducible: +

    +\begin{equation} + \delta z = 0.6 \frac{x^2}{L} +\end{equation}
  • +
  • Vertical stiffness negatively affected by displacement
  • +
  • Take care of maximum buckling (Figure 16)
  • +
  • Improve buckling load and Z stiffness by reinforced mid-section (Figure 17)
  • +
+ + +
+

parallel_guiding.png +

+

Figure 15: Parallel guiding

+
+ + +
+

buckling.png +

+

Figure 16: Example of bucklink

+
+ + +
+

reinforced_leaf_springs.png +

+

Figure 17: Reinforced leaf springs

+
+
+
+ +
+

1.5.3 Rotation Compliant Mechanism

+
+

+Figure 18 shows a rotation compliant mechanism: +

+
    +
  • 3 leaf springs
  • +
  • no sensitive for thermal load on the body: as the central part heat ups and expand, the center line of the rotation stays at the same position
  • +
+ + +
+

rotation_leaf_springs.png +

+

Figure 18: Example of rotation stage using leaf springs

+
+
+
+ +
+

1.5.4 Z translation

+
+

+Figure 19 shows a Z translation mechanism: +

+
    +
  • 5 struts (“needles”)
  • +
  • Not sensitive for thermal loads on body
  • +
+ +

+The problem is that when it moves vertical, there will also be some z rotation because the length of the strut is fixed (stiff). +This parasitic rotation is however predictable. +

+ + +
+

vertical_stage_compliant.png +

+

Figure 19: Z translation using 5 struts

+
+ +

+An alternative is to use folder leaf springs (Figure 20), and this avoid the parasitic rotation. +

+ + +
+

vertical_stage_leafs.png +

+

Figure 20: Z translation using 5 folded leaf springs

+
+
+
+ +
+

1.5.5 X-Y-Rz Stage

+
+

+An X-Y-Rz stage can be done either using 3 struts (Figure 21) or using 3 folded leaf springs (Figure 22). +

+ + +
+

x_y_rz_stage.png +

+

Figure 21: X,Y,Rz using 3 struts

+
+ + +
+

x_y_rz_leafs.png +

+

Figure 22: X,Y,Rz using 3 folded leaf springs

+
+
+
+ +
+

1.5.6 Compliant mechanism with only one fixed dof

+
+

+The compliant mechanism shown in Figure 23 only constrain the rotation about the y-axis. +

+ + +
+

case_1_leaf_springs.png +

+

Figure 23: 5dof motion, only the Ry is constrained

+
+
+
+ +
+

1.5.7 Summary

+
+
    +
  • compliant elements enable defined movements
  • +
  • Hinges or guidings can be used for small movements
  • +
  • No play, No friction, No wear, No contamination
  • +
  • but limited rotation, need a constant force to hold in place
  • +
+
+
+ +
+

1.5.8 Examples

+
+

+An example of a complex compliant mechanism is shown in Figure 24. +

+ + +
+

compliant_example_1.png +

+

Figure 24: Design concept

+
+ +

+Figure 25 shown a reinforced part to avoid buckling and improve vertical stiffness. +

+ + +
+

linear_bearing_leafs.png +

+

Figure 25: Use leaf springs instead of linear roller bearings

+
+
+
+ +
+

1.5.9 Mechatronics positioning challenge

+
+

+A X-Y-Rz stage is shown in Figure 26. +To make this stage usable for nano-metric positioning, the following ideas where used: +

+
    +
  • Use parallel mechanisms instead of serial one: +
      +
    • no stacking of errors
    • +
    • smaller, stiffer, in one plane
    • +
  • +
  • Symmetry: +
      +
    • Use 3 identical voice coil actuators
    • +
    • Use 3 identical sensors
    • +
    • Center position insensitive for temperature change
    • +
  • +
  • Flexure only; +
      +
    • no friction
    • +
    • no play
    • +
    • no wear
    • +
    • no particule (important for clean rooms)
    • +
    • no service
    • +
  • +
  • Continuously under control: +
      +
    • no alignment / crosstalk issues between axes
    • +
    • voice coil / sensors combination determines performance
    • +
  • +
+ + +
+

xyRz_positioning_challenge.png +

+

Figure 26: Example of X-Y-Rz positioning stage

+
+ +

+ +

+
+
+ +
+

1.5.10 Case - Play Free parallel Stage

+
+

+Figure 27 shows a parallel mechanism that should be converted to a compliant mechanism. +Its characteristics are: +

+
    +
  • 1mm stroke
  • +
  • 1:5 lever arm
  • +
  • 10kg payload
  • +
  • distance between hinges: 5nmm
  • +
  • thickness t: 40mm
  • +
  • Material: aluminium
  • +
+ + +
+

play_free_parallel_stage.png +

+

Figure 27: Example of a parallel stage that should be converting to a compliant mechanism

+
+ +

+The goals are to: +

+
    +
  • Make design using elastic hinges
  • +
  • Maximize vertical stiffness
  • +
  • Determine vertical stiffness
  • +
+ +

+The solution is shown in Figure 28. +

+ + +
+

play_free_parallel_stage_solution.png +

+

Figure 28: Case Solution

+
+
+
+
+ +
+

1.6 Thin plate design

+
+
+
+

1.6.1 Thin plate in torsion

+
+

+Thin plates are very important for compliant mechanisms. +

+ +

+The torsion stiffness of a thing plate is linear with the length of the thin plate: +

+\begin{equation} + k = \frac{G I_p}{L} +\end{equation} +

+with \(G\) the shear modulus: +

+\begin{equation} + G \approx 0.3 E +\end{equation} +

+where \(E\) is the young modulus +

+ +

+Then +

+\begin{equation} + I_p = \frac{1}{3} h t^3 = \frac{1}{3} A t^2 +\end{equation} +

+where \(A\) is the area of the cross section. +

+ + +
+

thin_plate_torsion.png +

+

Figure 29: A plate under torsion

+
+
+
+ +
+

1.6.2 Difference between open and close profile

+
+

+The close profile has much more torsional stiffness than the open profile. +

+ +

+Just by opening the tube, we have a much smaller torsional stiffness (but almost same axial stiffness for instance). +

+ + +
+

open_close_profil_torsion_stiffness.png +

+

Figure 30: Stiffness comparison open and closed tube (torsion)

+
+ + +

+We have similar behavior with an open/closed box. +If we remove one side of the cube shown in Figure 31, we would have much smaller torsional stiffness along the axis perpendicular to the removed side. +

+ + +
+

closed_box.png +

+

Figure 31: Closed box.

+
+ +

+If we use triangles, we obtain high torsional stiffness as shown in Figure 32. +

+ + +
+

torsion_stiffness_box_double_triangle.png +

+

Figure 32: Open box (double triangle)

+
+ +

+Frames are usually corresponding to open-boxes with have a small stiffness in torsion. +On way to reinforce it is using triangles. +

+ +

+A nice way to have a 1dof flexure guiding with stiff frame is shown in Figure 33. +

+ + +
+

z_stage_triangles.png +

+

Figure 33: Box with integrated flexure guiding

+
+
+
+
+
+ +
+

2 Keynote: Mechatronic challenges in optical lithography   @hans_butler

+
+
+
+

2.1 Introduction

+
+

+Question: in chip manufacturing, how do developments in optical lithography impact the mechatronic design? +

+ +

+Main developments: +

+
    +
  • Scanning & dual stage scanning
  • +
  • Immersion
  • +
  • Multiple patterning
  • +
  • Extreme ultra violet lithography
  • +
+
+
+ +
+

2.2 Chip manufacturing loop

+
+

+In this presentation, only the exposure step is discussed (lithography). +

+ + +
+

asml_chip_manufacturing_loop.png +

+

Figure 34: Chip manufacturing loop

+
+
+
+ +
+

2.3 Imaging process - Basics

+
+
    +
  • An illuminator provides light at constant wavelength \(\lambda\)
  • +
  • The pattern on the reticle diffracts the light into order
  • +
  • At least +/-1st orders need to be captures. +This will induce a sinusoidal wave on the wafer as shown in Figure 35.
  • +
  • Wafer and mast are placed on high accuracy moving stages
  • +
+ + +
+

asml_imaging_process.png +

+

Figure 35: Imaging process - basics

+
+
+
+ +
+

2.4 From stepper to scanner

+
+

+Before, one chip was illumating at a time, but people wanted to make bigger chips. +However, if was difficult to make larger lenses. +

+ +

+The solution was to use a scanner, were both the mask and wafer are on moving stages. +This implied many requirements in dynamics and accuracy! +

+ + +
+

asml_stepper_to_scanner.png +

+

Figure 36: From stepper to scanner

+
+
+
+ +
+

2.5 Dual stage scanners

+
+

+Both the reticle stage and wafer stage are moving. +In order to have the same throughput, higher stage accelerations are required. +

+ +

+This implies some mechatronics challenges: +

+
    +
  • higher stage acceleration
  • +
  • higher accuracy
  • +
  • interaction between stages
  • +
+

+Which are solved by: +

+
    +
  • Larger forces => balance masses
  • +
  • Stage dynamical design for high bandwidth control
  • +
  • Control coupling between stages (one control system can act as a disturbance to another controlled system => feedforward)
  • +
+ + +
+

asml_dual_stage_scanners.png +

+

Figure 37: Machine based on the dual stage scanners

+
+
+
+ +
+

2.6 Immersion technology

+
+

+Water is used between the lens and the wafer to increase the “NA” and thus decreasing the “critical dimension”. +

+ +

+The “hood” is there to prevent any bubble to enter the illumination area (Figure 38). +The position of the “hood” is actively control to follow the wafer stage (that can move in z direction and tilt). +

+ +

+Three solutions are used for the positioning control of the “hood” system (Figure 39): +

+
    +
  • Disturbance decoupling
  • +
  • Iterative learning control
  • +
  • Feed-forward control from the Wafer control signal
  • +
+ + +
+

asml_hood_system.png +

+

Figure 38: Hood System

+
+ + +
+

asml_immersion.png +

+

Figure 39: Control system for the “hood”

+
+
+
+ +
+

2.7 Multiple Patterning

+
+

+The multiple patterning approach adds few mechatronics challenges: +

+
    +
  • Position accuracy limited to ~4nm due to interferoemter position measurement (variation of temperature/pressure of air)
  • +
  • Stage swap is complex and time-consuming
  • +
+ +

+This was solved by: +

+
    +
  • Using encoder instead of interferometers
  • +
  • Use long stroke motor: h-stage => new wafer stage concept
  • +
+
+
+ +
+

2.8 Machine layout

+
+

+Each stage is controlled with 6dof lorentz short stroke actuators (Figure 40). +The magnet stage can move horizontally (due to reaction forces of the wafer stages): it asks as a balance mass. +

+ + +
+

asml_machine_layout_bis.png +

+

Figure 40: Machine layout

+
+
+
+ +
+

2.9 EUV Lithography

+
+

+Vacuum is required which implies: +

+
    +
  • no bearings
  • +
  • no cooling
  • +
+ +

+All the optics are reflective: +

+
    +
  • extremely accurately polished
  • +
  • challenge: keep mirrors optimally positioned
  • +
+ +

+Wafer stage: +

+
    +
  • Move at high speed and accelerations
  • +
  • Challenge: in vaccum
  • +
  • Solved by: machanically suspended balance mass, and interferoemter position meaured can be used because it is in vacuum now
  • +
+ + +
+

asml_euv.png +

+

Figure 41: Schematic of the ASML EUV machine

+
+
+
+ +
+

2.10 The future: high-NA EUV

+
+ +
+

asml_na_euv.png +

+

Figure 42: The CD will be 8nm

+
+ +

+In order to do so, high “opening” of the optics is required which is very challenges because the reflectiveness of mirror is decreasing as high angle of incidence (Figure 43). +

+ + +
+

asml_reflection_angle.png +

+

Figure 43: Change of reflection of a mirror as a function of the angle of indicence

+
+
+
+ +
+

2.11 Challenges for future Optical Lithography machines

+
+

+Challenges: +

+
    +
  • Double wafer stage acceleration
  • +
  • Much bigger mirrors
  • +
  • Tighter accuracy specifications despite
  • +
+ +

+Solutions: +

+
    +
  • Stage and mirror dynamics, high bandwidth control
  • +
  • Dynamics architecture: improved isolation, multiple isolate sets
  • +
  • Heating compensation
  • +
+
+
+ +
+

2.12 Conclusion

+
+

+The conclusions are: +

+
    +
  • Lithographic tools are the main enabler for over shrinking device sizes
  • +
  • New (optical) requirements lead to new mechatronic challenges: +
      +
    • Larger fields / better imaging: from stepping to scanning
    • +
    • Larger wafer size: dual stage scanners
    • +
    • Immersion: wafer stage & hood control
    • +
    • Multiple patterning: planar motors and encoder technology
    • +
    • EUV: all-vacuum stages
    • +
    • High-NA EUV: new optics, much larger accelerations
    • +
  • +
+
+
+
+ +
+

3 Designing anti-aliasing-filters for control loops of mechatronic systems regarding the rejection of aliased resonances   @ulrich_schonhoff

+
+
+
+

3.1 The phenomenon of aliasing of resonances

+
+

+Weakly damped flexible modes of the mechanism can limit the performance of motion control systems. +

+ +

+For discrete time controlled systems, there can be an additional limitation: aliased resonances which are rarely discussed. +

+ + +
+

aliasing_resonances.png +

+

Figure 44: Example of high frequency lighlty damped resonances

+
+ +

+The aliasing of signals is well known (Figure 45). +

+ +

+However, aliasing in systems can also happens and is schematically shown in Figure 46. +

+ + +
+

aliasing_signals.png +

+

Figure 45: Aliasing of Signals

+
+ + +
+

aliasing_system.png +

+

Figure 46: Aliasing of Systems

+
+ +

+The poles of the system will be aliased and their location will change in the complex plane as shown in Figure 47. +

+ +

+More precisely: +

+
    +
  • the imaginary parts of the poles mirror about the Nyquist frequency
  • +
  • the real parts of the poles remain equal
  • +
+ +

+Therefore, the damping of the aliased resonances are foreseen to have larger dampings. +

+ + +
+

aliasing_poles.png +

+

Figure 47: Aliasing of poles in the complex plane

+
+ +

+Let’s consider two systems with a resonance: +

+
    +
  1. below the Nyquist frequency (blue dashed)
  2. +
  3. above the Nyquist frequency (green dashed)
  4. +
+ +

+Then looking at the same systems in the digital domain, one can see thathen the resonance is above the Nyquist frequency (Figure 48): +

+
    +
  • the resonance mirrors
  • +
  • the damping is increased
  • +
+ +

+Therefore, when identifying a low damped resonance, it could be that it comes form a high frequency low damped resonance. +

+ + +
+

aliasing_above_nyquist.png +

+

Figure 48: Aliazed resonance shown on the Bode Diagram

+
+ + +
+

alising_much_above_nyquist.png +

+

Figure 49: Higher resonance frequency

+
+
+
+ +
+

3.2 Nature, Modelling and Mitigation of potentially aliasing resonances

+
+

+The aliased modes can for instance comes from local modes in the actuators that are lightly damped and at high frequency (Figure 50) +

+ + +
+

alising_nature.png +

+

Figure 50: Local vibration mode that will be alized

+
+ +

+The proposed idea to better model aliasing resonances is to include more modes in the FEM software as shown in Figure 51 and then perform an order reduction in matlab. +

+ + +
+

aliasing_modeling.png +

+

Figure 51: Common procedure and proposed procedure to include aliazed resonances

+
+
+
+ +
+

3.3 Anti aliasing filter design

+
+
+
+

3.3.1 Introduction

+
+
    +
  • Anti-aliasing filtering can be used to reject aliasing of resonances and to maintain the stability of the control loop
  • +
  • However, its phase lag deteriorates the control loop performances: +
      +
    • phase margin decreases (Figure 52)
    • +
    • sensitivity peak increases (Figure 53)
    • +
  • +
  • Thus, the anti-aliasing filter should be targeted at sufficient rejection at least possible phase lag
  • +
+ + +
+

alising_filter_introduction.png +

+

Figure 52: Example of the effect of aliased resonance on the open-loop

+
+ + +
+

aliasing_sensitivity_effect.png +

+

Figure 53: Example of the effect of aliased resonance on sensitivity function

+
+
+
+ +
+

3.3.2 Concept of equivalent delay

+
+

+Concept: +

+
    +
  • +At frequencies well below its poles and zeros, a continuous time filter \(F(j\omega)\) shows almost linear phase: +

    +\begin{equation} + \arg\big( F(j\omega) \big) \approx -T_e \omega +\end{equation}
  • +
  • +Thus, the phase lag of the filter can be fairly correctly represented by a time delay (below the pole frequency). +The equivalent delay is: +

    +\begin{equation} + T_e = \sum_{i=1}^{N_p} \frac{\xi_{pi}}{\omega_{0pi}} - \sum_{i=1}^{N_z} \frac{\xi_{zi}}{\omega_{0zi}} +\end{equation}
  • +
  • where \(\omega_{0pi}\) is the natural frequency \(\xi_{pi}\) is the damping of the \(N_p\) poles of \(F(s)\). +Similarly, \(\omega_{0zi}\) is the natural frequency \(\xi_{zi}\) is the damping of the \(N_z\) zeros of \(F(s)\).
  • +
+ +

+Examples (Figure 54): +

+
    +
  • First order low pass filter: +\[ \xi_p = 1 \Rightarrow T_e = \frac{1}{\omega_c} \]
  • +
  • Second order Butterworth low pass filter: +\[ \xi_p = \frac{1}{\sqrt{2}} \Rightarrow T_e = \sqrt{2} \frac{1}{\omega_c} \]
  • +
  • First order lead: +\[ \xi_z = 1 \Rightarrow T_e = - \frac{1}{\omega_c} \]
  • +
+ + +
+

aliasing_equivalent_delay.png +

+

Figure 54: Magnitude, Phase and Phase delay of 3 filters

+
+
+
+ +
+

3.3.3 Budgeting of phase lag

+
+

+The budgeting of the phase lag is done by expressing the phase lag of each element by a time delay (Figure 55) +

+ + +
+

aliasing_budget_phase.png +

+

Figure 55: Typical control loop with several phase lag / time delays

+
+ +

+The equivalent delay of each element are listed in Figure 56. +

+ + +
+

aliasing_budget_table.png +

+

Figure 56: Equivalent delay for all the elements of the control loop

+
+
+
+ +
+

3.3.4 Selecting the filter order

+
+

+The filter order can be chosen depending on the frequency of the resonance. +Some example of Butterworth filters are shown in Figure 57 and summarized in Figure 58. +

+ + +
+

aliasing_filter_order_bode.png +

+

Figure 57: Example of few Butterworth filters

+
+ + +
+

aliasing_filter_order_table.png +

+

Figure 58: Butterworth filters

+
+
+
+ +
+

3.3.5 Reducing the phase lag

+
+

+The equivalent delay of a low pass (here second order) depends on its damping, since: +\[ T_e = -2 \frac{\xi_{zi}}{\omega_{0zi}} \] +

+ + +
+

aliasing_reduce_phase_lag.png +

+

Figure 59: Change of the phase delay with the damping of the filter

+
+
+
+
+ +
+

3.4 Conclusion

+
+

+The phenomenon of aliasing of resonances: +

+
    +
  • Aliasing of resonances is an issue in discrete-time controlled mechatronic systems and can limit the performance and even render the closed loop system unstable
  • +
  • Resonances above the Nyquist Frequency appear aliased at mirrored frequency for the discrete-time controller
  • +
  • Aliased resonances show increased damping compared to the original resonances
  • +
  • To find out if a resonance is an aliased one or not, change the sampling frequency and see if the frequency of the resonance is changing or not
  • +
+ + +

+Nature, modelling and mitigation of potentially aliasing resonances: +

+
    +
  • The origin are typically local resonances of the sensor and actuator components
  • +
  • Careful modelling and selecting dominant modes above the Nyquist frequency is commended
  • +
+ + +

+Anti-aliasing filter design: +

+
    +
  • Anti-Aliasing filter design is the trade-off between rejection and phase-lag
  • +
  • The concept of equivalent delay allows to budget and design the phase lag
  • +
  • The order selection of anti alising-filter based on the required rejection is shown
  • +
  • Several approaches to reduce overall phase lag are presented
  • +
+
+
+
+ +
+

4 Flexure positioning stage based on delta technology for high precision and dynamic industrial machining applications   @mikael_bianchi

+
+
+
+

4.1 Introduction

+
+
    +
  • Goal: flexure positioning stage to do high precision and high dynamic/acceleration positioning. +The control architecture should be as simple as possible.
  • +
  • Application: micromachinign for fabrication of 3d structures
  • +
  • Possible field: watch industry, electronics, optics, …
  • +
  • Possible technologies: laser, milling, electro discharge machine
  • +
  • Objectives: improve the productivity reaching high accelerations at high precision
  • +
+
+
+ +
+

4.2 Design

+
+
+
+

4.2.1 Description of the Delta robot

+
+

+Technical choice: flexure based delta robot (Figure 60). +

+
    +
  • Advantages: high mechanical precision without backlash
  • +
  • Disadvantage: the motion is coupled, some transformations are required from motor coordinates to machine coordinates (Figure 61)
  • +
+ + +
+

flexure_delta_robot.png +

+

Figure 60: Picture of the Delta Robot

+
+ + +
+

flexure_delta_robot_schematic.png +

+

Figure 61: x1, x2 x3 are the motor positions. f1,f2 f3 are the force motors. x,y,z are the position of the final point in cartesian coordinates

+
+
+
+ +
+

4.2.2 Modelling and validation of the delta robot

+
+

+Lagrange equations are used to model the dynamics of the delta robot. +The motor positions are used as the general coordinate system. +

+ +

+The system is then linearized around the working point (Figure 62). +

+ + +
+

flexure_equations.png +

+

Figure 62: Linearized equations of the Delta Robot

+
+ +

+Then the parameters are identified from experiment (Figure 63). +

+ + +
+

flexure_identification.png +

+

Figure 63: Identification fo the transfer function from \(F_1\) to \(x_1\)

+
+ +

+The measurement of the coupling is move complicated as shown in Figure 64. +

+ + +
+

flexure_identification_coupling.png +

+

Figure 64: Problem of identifying the coupling between F1 and x2 at low frequency

+
+
+
+ +
+

4.2.3 Control design for high trajectory tracking

+
+

+Control requirements: +

+
    +
  • Precise position control of the coupled system (+/-10nm steps)
  • +
  • Minimal trajectory error at high frequency (+/- 100nm at +/- 1g acceleration)
  • +
  • Higher resonances attenuation
  • +
  • Whole motion system is considered as a standard cartesian XYZ axes for the user (do the inverse/forward kinematics inside the control architecture)
  • +
+ + +
+

flexure_control_concept.png +

+

Figure 65: Control concept used for the Delta robot

+
+
+
+ +
+

4.2.4 Electronic board

+
+

+A 3 axis servo control board as been developed (Figure 66) which includes: +

+
    +
  • identification algorithm of the coupled system integrated in the board
  • +
  • interpolator for sensors
  • +
+ +

+flexure_electronics_board.png] +

+
+
+
+ +
+

4.3 Results

+
+
+
+

4.3.1 Current control

+
+

+Step response of the current control loop is shown in Figure 66. +

+ + +
+

flexure_current_control_results.png +

+

Figure 66: Step response for the current control loop

+
+
+
+ +
+

4.3.2 Trajectory tracking: results with laser interferometer and encoder

+
+

+XY renishaw interferometers used to verify the performance of the system (Figure 67). +

+ + +
+

flexure_sensors.png +

+

Figure 67: Experimental setup to verify the performances of the system

+
+ +

+Some results are shown in Figures 68, 69 and 70. +

+ + +
+

flexure_results.png +

+

Figure 68: Circuit motion results and point to point motion results

+
+ + +
+

flexure_steps.png +

+

Figure 69: Step response of the system

+
+ + +
+

flexure_dynamics_errors.png +

+

Figure 70: Measured dynamical errors

+
+
+
+
+ +
+

4.4 Conclusion

+
+

+As a conclusion, here are the identified conditions for precise and high dynamic positioning: +

+
    +
  • Mechanics without backlash and resonances in higher frequency
  • +
  • Feedforward with correct parameters
  • +
  • High bandwidth position control and precise encoder
  • +
  • Low noise current sensors and high bandwidth current control
  • +
+ +

+Resonances at mid frequencies are an issue for further improvements. +

+
+
+
+ +
+

5 Multivariable performance analysis of position-controlled payloads with flexible eigenmodes   @luca_mettenleiter

+
+
+
+

5.1 Motivation

+
+

+Flexible eigenmodes are present in every system component and leads to:: +

+
    +
  • controller bandwidth limitation (Figure 71)
  • +
  • additional cross-coupling in the system behavior (Figure 72)
  • +
+ +

+=> can lead to stability problems +

+ + +
+

mimo_flexible_modes.png +

+

Figure 71: Limitation of the control bandwidth due to flexible eigenmodes

+
+ + +
+

mimo_flexible_modes_coupling.png +

+

Figure 72: Coupling due to flexible eigenmodes

+
+ +

+In order to estimate the performances of a system, the sensitivity function can be used (Figure 73). +

+ + +
+

mimo_sensitivity_performance.png +

+

Figure 73: Bode plot of a typical Sensitivity function

+
+
+
+ +
+

5.2 Performance analysis with different sensitivity functions

+
+

+There are different way to analyse the sensitivity function base on different plants (Figure 74): +

+
    +
  1. the full system (complicated): +\[ L_{full} = \begin{bmatrix}L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \]
  2. +
  3. the diagonal system (ignoring interaction) +\[ L_{diag} = \begin{bmatrix}L_{11} & 0 \\ 0 & L_{22} \end{bmatrix} \]
  4. +
  5. the loop interaction system (the one proposed here) +\[ L^{LI} = \begin{bmatrix}L_1^{LI} & 0 \\ 0 & L_2^{LI} \end{bmatrix} \]
  6. +
+ +

+The loop interaction methods created a SISO system that also represents the coupling in the system. +One loop is closed at a time, and the coupling effects are taken into account. +

+ + +
+

mimo_sensitivity_functions.png +

+

Figure 74: Visual representation of the three systems

+
+
+
+ +
+

5.3 Example system

+
+

+In order to compare the use of the three systems to estimate the performances of a MIMO system, the system shown in Figure 75 is used. +The 4 top masses are used to represent a payload that will add coupling in the system due to its resonances. +

+ +

+A diagonal PID controller is used. +

+ + +
+

mimo_example_system.png +

+

Figure 75: Schematic representation of the example system

+
+ + +

+The bode plot of the MIMO system is shown in Figure 76 where we can see the resonances in the off-diagonal elements. +

+ + +
+

mimo_example_bode.png +

+

Figure 76: Bode plot of the full MIMO system

+
+ +

+In Figure 77 is shown that the sensitivity function computed from the SISO system is not correct. +Whereas for the “interaction method” system, it is correct and almost match the full system sensibility. +However, as expected, the off-diagonal sensibilities are not modelled. +

+ + +
+

mimo_example_sensitivity.png +

+

Figure 77: Bode plots of sensitivity functions

+
+
+
+ +
+

5.4 Conclusion

+
+

+The conclusion are the following and summarized in Figure 78: +

+
    +
  • Choice of suitable analysis method is key concept in mechatronics engineering
  • +
  • Various methods for analysis of multivariable systems available: +
      +
    • Full system always delivers reliable information, but much analysis effort
    • +
    • Loop interaction method delivers reliable information, only if the system is weakly or symmetrically coupled
    • +
    • Diagonal system delivers unreliable information, as it does not take multivariable character into account
    • +
  • +
+ + + +
+

mimo_results.png +

+

Figure 78: Comparison of the three methods to deal with a MIMO system

+
+
+
+
+ +
+

6 High-precision motion system design by topology optimization considering additive manufacturing   @arnoud_delissen

+
+
+
+

6.1 Introduction

+
+

+The goal of this project is to perform a topology optimization of a 6dof magnetic levitated stage suitable for vacuum. +

+ +

+For the current system (Figure 79), the bandwidth is limited by the short-stroke dynamics (eigenfrequencies). +

+ +

+The goal here is to make the eigen-frequency higher as this will allow more bandwidth. +

+ + +
+

mimoopt_6dof_stage.png +

+

Figure 79: Schematic of the 6dof levitating stage

+
+
+
+ +
+

6.2 Case

+
+

+More precisely, the goal is to automatically maximize the three eigen-frequencies of the system shown in Figure 80. +

+ + +
+

mimoopt_case.png +

+

Figure 80: System to be optimized

+
+
+
+ +
+

6.3 Manufacturing process

+
+

+The manufacturing process must be embedded in the optimization such that the obtained design is producible. +The process is shown in Figure 81. +

+ + +
+

mimoopt_process.png +

+

Figure 81: Manufacturing process

+
+
+
+ +
+

6.4 Topology optimization

+
+

+Problem: for a given volume, maximize the eigen-frequencies of the system. +

+ +

+To do so, the system is discretized into small elements (Figure 82). +Then, a Finite Element Analysis is performed to compute the eigen-frequencies of the system. +Finally, for each element, the “gradient is computed” and we determine if material should be added or removed. +

+ +

+This is done in 3D. The individual 1mm x 1mm x 1mm elements are shown in Figure 82. +The number of elements is 1 million (=> 15 minutes per iteration to compute the 3 eigen-frequencies). +

+ + +
+

mimoopt_3d_opti.png +

+

Figure 82: Results of the topology optimization and zoom to see individual elements

+
+
+
+ +
+

6.5 Performance Comparison

+
+

+The obtained mass and eigen-frequencies of the optimized system and the solid equivalents are compared in Figure 83. +

+ + +
+

mimoopt_performance.png +

+

Figure 83: Comparison of the obtained performances

+
+ +

+Identification on the realized system shown that the obtained eigen-frequencies are very closed to the estimated ones (Figure 84). +

+ + +
+

mimoopt_frf_identification.png +

+

Figure 84: Results very close to simulation (~1% for the eigen frequencies)

+
+
+
+ +
+

6.6 Conclusion

+
+
    +
  • Increase in performance (~2x) compared to solid designs
  • +
  • A design is obtained in ~ 1 day
  • +
  • Practical constraints are incorporated in the optimization
  • +
  • The method is validated in practice by a demonstrator
  • +
+
+
+
+ +
+

7 A multivariable experiment design framework for accurate FRF identification of complex systems   @nic_dirkx

+
+
+
+

7.1 Introduction

+
+

+Goal: Need for higher quality FRF models that are used to: +

+
    +
  • Controller design
  • +
  • Observer design
  • +
  • System diagnostics
  • +
  • Parametric modelling
  • +
+ +

+High quality FRFs requires careful design of excitation \(w\). +

+ +

+Typical experimental identification of the FRFs is shown in Figure 85. +

+ +

+The design trade-off is: +

+
    +
  • Maximize input gain to minimize FRF uncertainty
  • +
  • Bounded signal \(u\) and \(y\) to remain within operating limited (actuator/amplifier power limitations and limited move ranges)
  • +
+ + +
+

frf_introduction.png +

+

Figure 85: schematic of the identification of the FRF

+
+ +

+For SISO systems: +

+
    +
  • Only the frequency size of the excitation signal should be optimized
  • +
+ +

+For MIMO systems: +

+
    +
  • the gains and directions should be frequency wise optimized
  • +
+ +

+Objective: +

+
    +
  • establish optimal experiment design framework that optimize the excitation signal to obtain MIMO FRFs with low uncertainty
  • +
+
+
+ +
+

7.2 Role of directions and constrains in multivariable excitation design

+
+

+The classical way to estimate MIMO FRFs is the following: +

+
    +
  • First start with one direction and increase the gain until constrains is attained (Figure 86)
  • +
  • Do the same with the second input
  • +
+ +

+This lead to non-optimal FRFs estimation. +

+ + +
+

frf_direction_excitation.png +

+

Figure 86: Example of a SISO approach to identify MIMO FRFs

+
+ +

+When having a MIMO approach and choosing both the direction and gain of the excitation inputs, we can obtained much better FRFs uncertainty while still fulfilling the constraints (Figure 87). +

+ + +
+

frf_mimo.png +

+

Figure 87: Example of the MIMO approach that gives much better FRFs

+
+
+
+ +
+

7.3 Solving the optimization problem

+
+

+The optimization problem is to minimize the model uncertainty by choosing the design variables which are the magnitude and direction of the inputs \(w\). +

+ +

+The optimization is a two step process as shown in Figure 88: +

+
    +
  1. first identification without optimization that allows to have data to run the optimization process
  2. +
  3. second identification with optimized input direction and gain
  4. +
+ +

+The problem with this optimization problem is that it is not convex in general and has a log of design variables. +There is no general methods to solve this problem, a dedicated algorithm is required. +

+ +

+In this work, two algorithms are proposed and not further detailed here. +

+ + +
+

frf_optimization_steps.png +

+

Figure 88: Two step optimization process

+
+
+
+ +
+

7.4 Experimental validation

+
+

+Experimental identification of a 7x8 MIMO plant was performed in for different cases: +

+
    +
  1. non optimized SISO approach (grey)
  2. +
  3. optimized SISO approach (blue)
  4. +
  5. optimized MIMO approach using SSDR (first algorithm proposed) (green)
  6. +
  7. optimized MIMO approach using RR (second algorithm proposed) (red)
  8. +
+ +

+The obtained FRFs are shown in Figure 89. +

+ + +
+

frf_experiment.png +

+

Figure 89: Obtained MIMO FRFs

+
+ +

+A comparison of one of the obtained FRFs is shown in Figure 90. +It is quite clear that the MIMO approach can give much lower FRF uncertainty. +The RR proposed algorithm is giving the best results +

+ + +
+

frf_experiment_optimized.png +

+

Figure 90: Example of one of the obtained FRF

+
+
+
+ +
+

7.5 Conclusion

+
+
    +
  • The uncertainty of the obtained FRF are obtained by doing several experimental identification with a deterministic input signal. +The FRF are computed multiple times, and the spread of the results at each frequency represents this uncertainty.
  • +
  • Exploiting directionality in excitation design enables significant FRF quality improvement
  • +
  • Multivariable design involves hard non-convex optimization problem
  • +
  • Computationally tractable design framework for large scale MIMO systems established
  • +
  • Near global optimal quality achieved on wafer stage setup using RR algorithm
  • +
+
+
+
+ +
+

8 Keynote: High precision mechatronic approaches for advanced nanopositioning and nanomeasuring technologies   @eberhard_manske

+
+
+
+

8.1 Coordinate Measurement Machines (CMM)

+
+

+Examples of Nano Coordinate Measuring Machines are shown in Figure 91. +

+ + +
+

prec_cmm.png +

+

Figure 91: Example of Coordinate Measuring Machines

+
+
+
+ +
+

8.2 Difference between CMM and nano-CMM

+
+

+With classical CMM, the Abbe-principle is not fulfilled in the x and y directions (Figure 92). +

+ +

+The Abbe error can be determined with: +

+\begin{equation} + \Delta l_{x,y,z} = l_{x,y,z} \sin \Delta \phi_{x,y,z} +\end{equation} + +

+Even with the best spindle: \(l_{x,y} = 100 mm\) and \(\Delta \phi = 2 \text{arcsec}\), we obtain an error of: +

+\begin{equation} + \Delta l = 0.1 \mu m +\end{equation} +

+which is not compatible with nano-meter precisions. +

+ +

+Then, the classical CMM will not work for nano precision +

+ + +
+

prec_cmm_nano_cmm.png +

+
+
+
+ +
+

8.3 How to do nano-CMM

+
+

+High precision mechatronic approaches are required for advanced nano-positionign and nano-measuring technologies: +

+
    +
  • High precision measurement concept
  • +
  • High precision measurement systems
  • +
  • High precision nano-sensors
  • +
+

+Combined with: +

+
    +
  • Advanced automatic control
  • +
  • Advanced measuring strategies
  • +
+
+
+ +
+

8.4 Concept - Minimization of the Abbe Error

+
+

+In order to minimize the Abbe error, the measuring “lines” should have a common point of intersection (Figure 93). +

+ +

+The 3D-realization of Abbe-principle is as follows: +

+
    +
  • 3 interferometers: cartesian coordinate system
  • +
  • probe located as the intersection point of the interferometers
  • +
+ + +
+

prec_nano_cmm_concept.png +

+

Figure 93: Error minimal measuring principle

+
+
+
+ +
+

8.5 Minimization of residual Abbe error

+
+

+Still some residual Abbe error can happen as shown in Figure 94 due to both a change of angle and change of position. +

+ + +
+

prec_abbe_min.png +

+

Figure 94: Residual Abbe error

+
+
+
+ +
+

8.6 Compare of long travel guiding systems

+
+

+In order to have the Abbe error compatible with nano-meter precision, the precision of the spindle should be less and one arcsec which is not easily feasible with air bearing of precision roller bearing technologies as shown in Figure 95. +

+ + +
+

prec_comp_guid.png +

+

Figure 95: Characteristics of guidings

+
+
+
+ +
+

8.7 Extended 6 DoF Abbe comparator principle

+
+

+The solution used was to measure in real time the angles of the frame using autocollimators as shown in Figure 96 and then to minimize this tilt by close loop operation with additional actuators. +

+ +

+The angular measurement error and control is less than \(0.05 \text{arcses}\) which make the residual Abbe error: +

+\begin{equation} + \Delta l < 0.05\,nm +\end{equation} + +

+Without an error-minimal approach, nano-meter precision cannot be achieved in large areas. +

+ + +
+

prec_6dof_abbe.png +

+

Figure 96: Use of additional autocollimator and actuators for Abbe minimization

+
+
+
+ +
+

8.8 Practical Realisation

+
+

+A practical realization of the Extended 6 DoF Abbe comparator principle is shown in Figure 97. +

+ + +
+

prec_practical_6dof.png +

+

Figure 97: Practical Realization of the

+
+
+
+ +
+

8.9 Tilt Compensation

+
+

+To measure compensate for any tilt, two solutions are proposed: +

+
    +
  1. Use a zero point angular auto-collimator (Figure 98) +
      +
    • Resolution: 0.005 arcsec
    • +
    • Stability (1h): < 0.05 arcsec
    • +
  2. +
  3. 6 DoF laser interferoemter (Figure 99) +
      +
    • Resolution: 0.00002 arcsec
    • +
    • Stability (1h): < 0.00005 arcsec
    • +
  4. +
+ + +
+

prec_tilt_corection.png +

+

Figure 98: Auto-Collimator

+
+ + +
+

prec_tilt_corection_bis.png +

+

Figure 99: 6 Interferometers to measure tilts

+
+
+
+ +
+

8.10 Comparison of long travail guiding systems - Bis

+
+

+Now, if we actively compensate the tilts are shown previously, we can fulfill the requirements as shown in Figure 100. +

+ +

+Measurement and control technology to minimize Abbe errors to achieve: +

+
    +
  • sub-nanometer precision
  • +
  • smaller moving mass
  • +
  • better dynamics
  • +
+ + +
+

prec_comp_guid_bis.png +

+

Figure 100: Characteristics of the tilt compensation system

+
+
+
+ +
+

8.11 Drive concept

+
+

+Usually, in order to achieve a large range over small resolution, each axis of motion is a combination of a coarse motion and a fine motion stage. +The coarse motion stage generally consist of a stepper motor while the fine motion is a piezoelectric actuator. +

+ +

+The approach here is to use an homogenous drive concept for increase dynamics (Figure 101). +

+ +

+Only one linear voice coil actuator is used which with large moving range and sub-nanometer resolution can be achieve at one time. +

+ + +
+

prec_drive_concept.png +

+

Figure 101: Voice Coil Actuator

+
+
+
+ + +
+

8.12 NPMM-200 with extended measuring volume

+
+

+The NPMM-200 machine can be seen in Figure 102. +

+ +

+Characteristics: +

+
    +
  • Measuring range: 200 mm x 200 mm x 25 mm
  • +
  • Resolution: 20 pm
  • +
  • Abbe comparator principle
  • +
  • 6 laser interferometers
  • +
  • Active angular compensation
  • +
  • Position uncertainty < 4 nm
  • +
  • Measuring uncertainty up to 30 nm
  • +
+ + +
+

prec_mechanics.png +

+

Figure 102: Picture of the NPMM-200

+
+ +

+The NPMM-200 actually operates inside a Vacuum chamber as shown in Figure 103. +

+ + +
+

prec_vacuum_cham.png +

+

Figure 103: Vacuum chamber used

+
+
+
+ +
+

8.13 measurement capability

+
+

+Some step responses are shown in Figure 104 and show the nano-metric precision of the machine. +

+ + +
+

prec_results_meas.png +

+

Figure 104: Sub nano-meter position accuracy

+
+ +

+Picometer steps can even be achieved as shown in Figure 105. +

+ + +
+

prec_results_pico.png +

+

Figure 105: Picometer level control

+
+
+
+ +
+

8.14 Extension of the measuring range (700mm)

+
+

+If the measuring range is to be increase, there are some limits of the moving stage principle: +

+
    +
  • large moving masses (~300kg)
  • +
  • powerful drive systems required
  • +
  • nano-meter position capability problematic
  • +
  • large heat dissipation in the system
  • +
  • dynamics and dynamic deformation
  • +
+ +

+The proposed solution is to use inverse dynamic concept for minimization of moving masses. +

+
+
+ +
+

8.15 Inverse kinematic concept - Tetrahedrical concept

+
+

+The proposed concept is shown in Figure 106: +

+
    +
  • mirrors and object to be measured are fixed
  • +
  • probe and interferometer heads are moved
  • +
  • laser beams virtually intersect in the probe tip
  • +
  • Tetrahedrical measuring volume
  • +
+ +

+This fulfills the Abbe principe but: +

+
    +
  • large construction space
  • +
  • difficult guide and drive concept
  • +
+ + +
+

prec_inverse_kin.png +

+

Figure 106: Tetrahedrical concept

+
+
+
+ +
+

8.16 Inverse kinematic concept - Scanning probe principle

+
+

+An other concept, the scanning probe principle is shown in Figure 107: +

+
    +
  • cuboidal measuring volume
  • +
  • Fixed x-y-z mirrors
  • +
  • moving measuring head
  • +
  • guide and drive system outside measuring volume
  • +
+ + +
+

prec_inverse_kin_scan.png +

+

Figure 107: Scanning probe principle

+
+
+
+ +
+

8.17 Inverse kinematic concept - Compact measuring head

+
+

+In order to minimize the moving mass, compact measuring heads have been developed. +The goal was to make a lightweight measuring head (<1kg) +

+ +

+The interferometer used are fiber coupled laser interferometers with a mass of 37g (Figure 108). +

+ + +
+

prec_interferometers.png +

+

Figure 108: Micro Interferometers

+
+ +

+The concept is shown in Figure 109: +

+
    +
  • 6dof interferometers are used
  • +
  • one micro-probe
  • +
  • the total mass of the head is less than 1kg
  • +
+ +

+There is some abbe offset between measurement axis of probe and of interferometer but Abbe error compensation by closed loop control of angular deviations is used. +

+ + +
+

prec_inverse_meas_head.png +

+
+
+
+ +
+

8.18 Inverse kinematic concept - Scanning probe principle

+
+

+As shown in Figure 110, the abbe error can be compensated from the two top interferometers as: +\[ \text{for } l_x = a: \quad \Delta l_{\text{Abbe}} = \Delta l_{\text{int}} \] +Thus the tilt and Abbe errors can be compensated for with sub-nm resolution. +

+ + +
+

prec_abbe_compensation.png +

+

Figure 110: Use of the interferometers to compensate for the Abbe errors

+
+
+
+ +
+

8.19 Conclusion

+
+

+Proposed approaches to push the nano-positioning and nano-measuring technology: +

+
    +
  • Measurement and control technology to minimize Abbe errors
  • +
  • Homogeneous drive concept for increased dynamics
  • +
  • Inverse kinematic concept for minimization of moving mass
  • +
  • Abbe-error compensation by closed loop control of angular deviations
  • +
+
+
+
+ +
+

9 Reducing control delay times to enhance dynamic stiffness of magnetic bearings   @jan_philipp_schmidtmann

+
+

+This projects focuses on reducing the control delay times of a magnetic bearing shown in Figure 111. +

+ + +
+

magn_bear_intro.png +

+

Figure 111: 6 DoF Position System - Concept

+
+ +

+Active magnetic bearings are unstable systems and require active control. +However, the active control of magnet forces leads to a control delay that limits the performances (stiffness) of the bearing. +

+ +

+Typical contributors to the control delay time are shown in Figure 112. +

+ + +
+

magn_bear_delay.png +

+

Figure 112: Typical Contributors to control delay time

+
+ +

+The reduction of the control time delay will increase the dynamic stiffness of the bearing as well as decrease the effects of external disturbances and hence improve the positioning errors (Figure 113). +

+ +

+The steps to reduce the control delay time are: +

+
    +
  1. Eliminate BUSS-communication by merging position and current controller
  2. +
  3. Reduce cycle time by using rapid prototyping system
  4. +
  5. Reduce delay in PWM driver by using high PWM frequencies with SiC driver
  6. +
+ + +
+

magn_bear_distur.png +

+

Figure 113: The effect of control delay on stiffness

+
+ +

+Therefore, the position and current control have been merged into one controller (Figure 114). +

+ + +
+

magn_controller.png +

+

Figure 114: Controller for position and current

+
+ +

+A dSpace rapid prototyping system is used for fast position and current control. +Characteristics of the used elements are shown in Figure 115. +

+ + +
+

magn_bear_setup.png +

+

Figure 115: Setup for reduced delay times

+
+ +

+Differences between the previous PWM controller and the new SiC controller are shown in Figure 116. +The delay time is almost completely eliminated. +

+ + +
+

magn_bear_results.png +

+

Figure 116: Reduction of delay in PWM Driver

+
+ +

+Due to all the performed modifications, the control delay time could be reduced by 80%. +The next steps for this project are shown in Figure 117. +

+ + +
+

magn_bear_conclusion.png +

+

Figure 117: Next Steps

+
+
+
+ +
+

10 Digital twins in control: From fault detection to predictive maintenance in precision mechatronics   @koen_classens

+
+
+
+

10.1 Motivation

+
+

+Models are usually for the control design part that can be either physical models (FEM, first principle) or data-driven models. +However, these models are usually not used after control system is implemented (Figure 118). +

+ + +
+

twins_motivation.png +

+

Figure 118: Typical of of models in a mechatronic system

+
+ +

+Here, the models are exploited to monitor the system and predict future possible failures in the system. +Use models as digital twin for fault detection and Isolation for predictive maintenance in precision mechatronics (Figure 119). +

+ + +
+

twing_fdi.png +

+

Figure 119: FDI is using the model of the plant

+
+
+
+ +
+

10.2 Predictive Maintenance

+
+

+Classical maintenance happens when the system is not working anymore as shown in Figure 120. +

+ + +
+

twins_predictive_maintenance.png +

+

Figure 120: Maintenance done when a failure is appearing

+
+ +

+It is possible to perform some preventive maintenance before a failure happens, but this is still not optimal. +

+ + +
+

twins_predictive_maintenance_bis.png +

+

Figure 121: Preventive Maintenance

+
+ +

+The idea here is to predict when the failure will happen in order to only do maintenance only when really necessary. +This will minimize the down time of the machine. +

+ + +
+

twins_predictive_maintenance_ter.png +

+

Figure 122: Predictive maintenance

+
+
+
+ +
+

10.3 Objectives

+
+

+The main objective is to develop a system monitoring approach for precision mechatronic systems, exploiting prior information (models) and integrating posterior information (real-time measured data). +

+ +

+Even though state of the art system monitoring are already in used in aerospace, process industry and automotive, there are few specificity for mechatronic systems: +

+
    +
  • Control loops
  • +
  • Large-scale MIMO systems (interaction)
  • +
  • Accurate models: Frequency Response Functions
  • +
+
+
+ + +
+

10.4 Null-space based FDI

+
+

+The goal is to applied a decentralized Fault Detection on the system shown in Figure 123 to detect actuator faults at \(J_1\). +This should take into account the control loop, interaction in the system and be FRF based. +

+ + +
+

twings_fdi_test.png +

+

Figure 123: Test System

+
+ +

+The architecture to estimate faults in the system is shown in Figure 124. +The goal is to design \(Q_u\) and \(Q_y\) such that \(\epsilon\) is a representation of faults in the system. +

+ + +
+

twins_null_space_fdi.png +

+

Figure 124: Residual Generator

+
+ +

+When a fault happens (Figure 125), the outputs signals are not changing that much (because of feedback), however the system is able to find that there is a problem using the residual \(\epsilon\). +

+ + +
+

twins_results_fdi.png +

+

Figure 125: Simulation Results

+
+ +

+Procedure: +

+
    +
  • Additive faults
  • +
  • Closed-loop
  • +
  • Interaction
  • +
  • start from identification
  • +
+
+
+ +
+

10.5 Roadmap from fault detection to predictive maintenance

+
+

+The proposed system can detect faults in the system (Figure 126). +This proof of principle should now be applied on industrial systems. +Moreover, from the fault detection, predictive maintenance should be performed (Figure 126). +

+ + +
+

twins_roadmap.png +

+

Figure 126: From proof of principle to industrial application

+
+ + +
+

twins_roadmap_bis.png +

+

Figure 127: From fault detection to predictive maintenance

+
+
+
+
+
+
+

Author: Dehaeze Thomas

+

Created: 2020-11-20 ven. 09:23

+
+ + diff --git a/notes.org b/notes.org new file mode 100644 index 0000000..deec9fe --- /dev/null +++ b/notes.org @@ -0,0 +1,1445 @@ +#+TITLE: EUSPEN +:DRAWER: +#+STARTUP: overview + +#+LANGUAGE: en +#+EMAIL: dehaeze.thomas@gmail.com +#+AUTHOR: Dehaeze Thomas + +#+HTML_LINK_HOME: ../index.html +#+HTML_LINK_UP: ../index.html + +#+HTML_HEAD: +#+HTML_HEAD: + +#+HTML_MATHJAX: align: center tagside: right font: TeX + +#+PROPERTY: header-args:matlab :session *MATLAB* +#+PROPERTY: header-args:matlab+ :comments org +#+PROPERTY: header-args:matlab+ :results none +#+PROPERTY: header-args:matlab+ :exports both +#+PROPERTY: header-args:matlab+ :eval no-export +#+PROPERTY: header-args:matlab+ :output-dir figs +#+PROPERTY: header-args:matlab+ :tangle no +#+PROPERTY: header-args:matlab+ :mkdirp yes + +#+PROPERTY: header-args:shell :eval no-export + +#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") +#+PROPERTY: header-args:latex+ :imagemagick t :fit yes +#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 +#+PROPERTY: header-args:latex+ :imoutoptions -quality 100 +#+PROPERTY: header-args:latex+ :results file raw replace +#+PROPERTY: header-args:latex+ :buffer no +#+PROPERTY: header-args:latex+ :eval no-export +#+PROPERTY: header-args:latex+ :exports results +#+PROPERTY: header-args:latex+ :mkdirp yes +#+PROPERTY: header-args:latex+ :output-dir figs +#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") +:END: + +* Tutorial: Design concepts for sub-micrometer positioning :@huub_janssen: +** Positioning Terminology +- *Accuracy*: + Accuracy describes how close the mean result is to the reference value. (Figure [[fig:position_terminology]]) +- *Repeatability*: + Repeatability describes the variation between results. (Figure [[fig:position_terminology]]) +- *Resolution*: + The resolution of a system is equal to the smallest incremental step that can be made (Figure [[fig:position_resolution]]) +- *Stability*: + The stability of a system is the maximum deviation from a constant reference value over time. + The stability is always related to the time frame taken into account. (Figure [[fig:position_stability]]) + +#+name: fig:position_terminology +#+caption: Accuracy and Repeatability +[[file:figs/position_terminology.png]] + +#+name: fig:position_resolution +#+caption: Position Resolution +[[file:./figs/position_resolution.png]] + +#+name: fig:position_stability +#+caption: Position Stability +[[file:./figs/position_stability.png]] + +** Principles of accuracy +Limited stiffness, play and friction will induce an hysteresis for a positioning system as shown in Figure [[fig:stiffness_friction]]. + +The hysteresis can actually help estimating the play and friction present in the system. + +#+name: fig:stiffness_friction +#+caption: Stiffness, play and Friction +[[file:figs/stiffness_friction.png]] + +Ways to make the hysteresis smaller: +- avoid play (=> use compliant elements) +- minimize friction +- use high stiffness + +The position uncertainty of a system can be estimated as follow (Figure [[fig:position_uncertainty]]): +\begin{equation} + \text{Position Uncertainty} = \text{play} + 2 \times \text{Virtual Play} +\end{equation} +where the virtual play can be estimated as follow: +\begin{equation} + \text{Virtual Play} = \frac{\text{Friction Force}}{\text{Actuator Stiffness}} = \frac{F_w}{c} +\end{equation} + +#+name: fig:position_uncertainty +#+caption: Hysterestis, play and virtual play +[[file:figs/position_uncertainty.png]] + +When considering dynamics, the goal is to make the first resonance frequency much higher than the frequency of the wanted motion. +Thus, the general recommendation is then to minimize mass and to increase stiffness. + +Moreover, we generally want things to be predictable: +- constant, preferably no friction. + Note that it is very difficult to make a system with constant friction in practice, so better make a system with no friction. +- no play +- high stiffness +- low pass + +** Case 1 - Estimate the virtual play + +Estimate the virtual play of the system in Figure [[fig:case_1]] with following characteristics: +- Payload: $m = 20\,kg$ +- Friction coefficient in drive direction: $f = 0.05$ +- Table stroke: $L = 300\,mm$ +- Screw spindle inner diameter: $d = 8\, mm$ +- Spindle Material: Stainless steel + +#+name: fig:case_1 +#+caption: Studied system for "Case 1" +[[file:./figs/case_1.png]] + +First the friction force can be calculated as the vertical mass times the friction coefficient: +\begin{equation} + F_w = (mg) f +\end{equation} + +Then, the axial stiffness of the screw spindle is computed: +\begin{equation} + c = \frac{A}{L} E +\end{equation} +with: +- $A = \pi d^2$ is the screw section area +- $L = 300\,mm$ is the screw length +- $E$ is the Young modulus of stainless steel + +And finally: +\begin{equation} + \text{Virtual Play} = \frac{F_w}{c} \approx 0.6\,\mu m +\end{equation} + +** Conventional elements for constraining DoFs + +There exist many conventional elements for constraining DoFs. +Some of them are: +- Struts with ball joint: 1DoF constrained (Figure [[fig:ball_joint]]) +- Ball bearing: 5DoF constrained (Figure [[fig:ball_bearing]]) +- Guide with roller bearing: 4DoF constrained (Figure [[fig:roller_bearing]]) +- Roller rail guide: 5DoF constrained (Figure [[fig:roller_rail_guide]]) + +#+name: fig:ball_joint +#+caption: Ball Joint +[[file:./figs/ball_joint.png]] + +#+name: fig:ball_bearing +#+caption: Ball Bearing +[[file:./figs/ball_bearing.png]] + +#+name: fig:roller_bearing +#+caption: Roller Bearing +[[file:./figs/roller_bearing.png]] + +#+name: fig:roller_rail_guide +#+caption: Roller Rail Guide +[[file:./figs/roller_rail_guide.png]] + +** Compliant elements for constraining DoFs +*** Basic leaf springs and folded leaf springs + +An example of a complaint element is shown in Figure [[fig:compliant_leaf]]. + +#+name: fig:compliant_leaf +#+caption: Example of 1dof constrained compliant element +[[file:figs/compliant_1dof.png]] + +Other types of compliant elements include: +- Leaf spring: constrains 3 dof (Figure [[fig:leaf_springs]]) +- Folded leaf spring: constrains only 1dof (Figure [[fig:folded_leaf_springs]]) + These are generally used in combination with other folded leaf springs. +- Flexure pivots: constrains 5 dofs (Figure [[fig:flexure_pivots]]) + +#+name: fig:leaf_springs +#+caption: Leaf springs +[[file:./figs/leaf_springs.png]] + +#+name: fig:folded_leaf_springs +#+caption: Folded Leaf springs +[[file:./figs/folded_leaf_springs.png]] + +#+name: fig:flexure_pivots +#+caption: Flexure Pivots (5dof constrained) +[[file:./figs/flexure_pivots.png]] + +*** 1dof Parallel Guiding + +Parallel guiding can be made using two leaf springs (Figure [[fig:parallel_guiding]]): +- 2 parallel leaf springs +- Force actuator in center of parallelism (middle of the leaf springs) to avoid coupled rotation +- Sag in vertical direction as a function as the horizontal displacement. + This sag is predictible and reproducible: + \begin{equation} + \delta z = 0.6 \frac{x^2}{L} + \end{equation} +- Vertical stiffness negatively affected by displacement +- Take care of maximum buckling (Figure [[fig:buckling]]) +- Improve buckling load and Z stiffness by reinforced mid-section (Figure [[fig:reinforced_leaf_springs]]) + +#+name: fig:parallel_guiding +#+caption: Parallel guiding +[[file:./figs/parallel_guiding.png]] + +#+name: fig:buckling +#+caption: Example of bucklink +[[file:./figs/buckling.png]] + +#+name: fig:reinforced_leaf_springs +#+caption: Reinforced leaf springs +[[file:./figs/reinforced_leaf_springs.png]] + +*** Rotation Compliant Mechanism + +Figure [[fig:rotation_leaf_springs]] shows a rotation compliant mechanism: +- 3 leaf springs +- no sensitive for thermal load on the body: as the central part heat ups and expand, the center line of the rotation stays at the same position + +#+name: fig:rotation_leaf_springs +#+caption: Example of rotation stage using leaf springs +[[file:./figs/rotation_leaf_springs.png]] + +*** Z translation +Figure [[fig:vertical_stage_compliant]] shows a Z translation mechanism: +- 5 struts ("needles") +- Not sensitive for thermal loads on body + +The problem is that when it moves vertical, there will also be some z rotation because the length of the strut is fixed (stiff). +This parasitic rotation is however predictable. + +#+name: fig:vertical_stage_compliant +#+caption: Z translation using 5 struts +[[file:./figs/vertical_stage_compliant.png]] + +An alternative is to use folder leaf springs (Figure [[fig:vertical_stage_leafs]]), and this avoid the parasitic rotation. + +#+name: fig:vertical_stage_leafs +#+caption: Z translation using 5 folded leaf springs +[[file:./figs/vertical_stage_leafs.png]] + +*** X-Y-Rz Stage +An X-Y-Rz stage can be done either using 3 struts (Figure [[fig:x_y_rz_stage]]) or using 3 folded leaf springs (Figure [[fig:x_y_rz_leafs]]). + +#+name: fig:x_y_rz_stage +#+caption: X,Y,Rz using 3 struts +[[file:./figs/x_y_rz_stage.png]] + +#+name: fig:x_y_rz_leafs +#+caption: X,Y,Rz using 3 folded leaf springs +[[file:./figs/x_y_rz_leafs.png]] + +*** Compliant mechanism with only one fixed dof + +The compliant mechanism shown in Figure [[fig:case_1_leaf_springs]] only constrain the rotation about the y-axis. + +#+name: fig:case_1_leaf_springs +#+caption: 5dof motion, only the Ry is constrained +[[file:./figs/case_1_leaf_springs.png]] + +*** Summary + +- compliant elements enable defined movements +- Hinges or guidings can be used for small movements +- *No play, No friction, No wear, No contamination* +- *but limited rotation, need a constant force to hold in place* + +*** Examples +An example of a complex compliant mechanism is shown in Figure [[fig:compliant_example_1]]. + +#+name: fig:compliant_example_1 +#+caption: Design concept +[[file:./figs/compliant_example_1.png]] + +Figure [[fig:linear_bearing_leafs]] shown a reinforced part to avoid buckling and improve vertical stiffness. + +#+name: fig:linear_bearing_leafs +#+caption: Use leaf springs instead of linear roller bearings +[[file:./figs/linear_bearing_leafs.png]] + +*** Mechatronics positioning challenge + +A X-Y-Rz stage is shown in Figure [[fig:xyRz_positioning_challenge]]. +To make this stage usable for nano-metric positioning, the following ideas where used: +- Use parallel mechanisms instead of serial one: + - no stacking of errors + - smaller, stiffer, in one plane +- Symmetry: + - Use 3 identical voice coil actuators + - Use 3 identical sensors + - Center position insensitive for temperature change +- Flexure only; + - no friction + - no play + - no wear + - no particule (important for clean rooms) + - no service +- Continuously under control: + - no alignment / crosstalk issues between axes + - voice coil / sensors combination determines performance + +#+name: fig:xyRz_positioning_challenge +#+caption: Example of X-Y-Rz positioning stage +[[file:./figs/xyRz_positioning_challenge.png]] + +yt:OjNnHa6O9A8 + +*** Case - Play Free parallel Stage +Figure [[fig:play_free_parallel_stage]] shows a parallel mechanism that should be converted to a compliant mechanism. +Its characteristics are: +- 1mm stroke +- 1:5 lever arm +- 10kg payload +- distance between hinges: 5nmm +- thickness t: 40mm +- Material: aluminium + +#+name: fig:play_free_parallel_stage +#+caption: Example of a parallel stage that should be converting to a compliant mechanism +[[file:./figs/play_free_parallel_stage.png]] + +The goals are to: +- Make design using elastic hinges +- Maximize vertical stiffness +- Determine vertical stiffness + +The solution is shown in Figure [[fig:play_free_parallel_stage_solution]]. + +#+name: fig:play_free_parallel_stage_solution +#+caption: Case Solution +[[file:./figs/play_free_parallel_stage_solution.png]] + +** Thin plate design +*** Thin plate in torsion +Thin plates are very important for compliant mechanisms. + +The torsion stiffness of a thing plate is linear with the length of the thin plate: +\begin{equation} + k = \frac{G I_p}{L} +\end{equation} +with $G$ the shear modulus: +\begin{equation} + G \approx 0.3 E +\end{equation} +where $E$ is the young modulus + +Then +\begin{equation} + I_p = \frac{1}{3} h t^3 = \frac{1}{3} A t^2 +\end{equation} +where $A$ is the area of the cross section. + +#+name: fig:thin_plate_torsion +#+caption: A plate under torsion +[[file:./figs/thin_plate_torsion.png]] + +*** Difference between open and close profile +The close profile has much more torsional stiffness than the open profile. + +Just by opening the tube, we have a much smaller torsional stiffness (but almost same axial stiffness for instance). + +#+name: fig:open_close_profil_torsion_stiffness +#+caption: Stiffness comparison open and closed tube (torsion) +[[file:./figs/open_close_profil_torsion_stiffness.png]] + + +We have similar behavior with an open/closed box. +If we remove one side of the cube shown in Figure [[fig:closed_box]], we would have much smaller torsional stiffness along the axis perpendicular to the removed side. + +#+name: fig:closed_box +#+caption: Closed box. +[[file:./figs/closed_box.png]] + +If we use triangles, we obtain high torsional stiffness as shown in Figure [[fig:torsion_stiffness_box_double_triangle]]. + +#+name: fig:torsion_stiffness_box_double_triangle +#+caption: Open box (double triangle) +[[file:./figs/torsion_stiffness_box_double_triangle.png]] + +Frames are usually corresponding to open-boxes with have a small stiffness in torsion. +On way to reinforce it is using triangles. + +A nice way to have a 1dof flexure guiding with stiff frame is shown in Figure [[fig:z_stage_triangles]]. + +#+name: fig:z_stage_triangles +#+caption: Box with integrated flexure guiding +[[file:./figs/z_stage_triangles.png]] + +* Keynote: Mechatronic challenges in optical lithography :@hans_butler: +** Introduction +*Question*: in chip manufacturing, how do developments in optical lithography impact the mechatronic design? + +Main developments: +- Scanning & dual stage scanning +- Immersion +- Multiple patterning +- Extreme ultra violet lithography + +** Chip manufacturing loop + +In this presentation, only the exposure step is discussed (lithography). + +#+name: fig:asml_chip_manufacturing_loop +#+caption: Chip manufacturing loop +[[file:./figs/asml_chip_manufacturing_loop.png]] + +** Imaging process - Basics + +- An illuminator provides light at constant wavelength $\lambda$ +- The pattern on the reticle diffracts the light into order +- At least +/-1st orders need to be captures. + This will induce a sinusoidal wave on the wafer as shown in Figure [[fig:asml_imaging_process]]. +- Wafer and mast are placed on high accuracy moving stages + +#+name: fig:asml_imaging_process +#+caption: Imaging process - basics +[[file:./figs/asml_imaging_process.png]] + +** From stepper to scanner + +Before, one chip was illumating at a time, but people wanted to make bigger chips. +However, if was difficult to make larger lenses. + +The solution was to use a scanner, were both the mask and wafer are on moving stages. +This implied many requirements in dynamics and accuracy! + +#+name: fig:asml_stepper_to_scanner +#+caption: From stepper to scanner +[[file:./figs/asml_stepper_to_scanner.png]] + +** Dual stage scanners + +Both the reticle stage and wafer stage are moving. +In order to have the same throughput, higher stage accelerations are required. + +This implies some mechatronics challenges: +- higher stage acceleration +- higher accuracy +- interaction between stages +Which are solved by: +- Larger forces => balance masses +- Stage dynamical design for high bandwidth control +- Control coupling between stages (one control system can act as a disturbance to another controlled system => feedforward) + +#+name: fig:asml_dual_stage_scanners +#+caption: Machine based on the dual stage scanners +[[file:./figs/asml_dual_stage_scanners.png]] + +** Immersion technology + +Water is used between the lens and the wafer to increase the "NA" and thus decreasing the "critical dimension". + +The "hood" is there to prevent any bubble to enter the illumination area (Figure [[fig:asml_hood_system]]). +The position of the "hood" is actively control to follow the wafer stage (that can move in z direction and tilt). + +Three solutions are used for the positioning control of the "hood" system (Figure [[fig:asml_immersion]]): +- Disturbance decoupling +- Iterative learning control +- Feed-forward control from the Wafer control signal + +#+name: fig:asml_hood_system +#+caption: Hood System +[[file:./figs/asml_hood_system.png]] + +#+name: fig:asml_immersion +#+caption: Control system for the "hood" +[[file:./figs/asml_immersion.png]] + +** Multiple Patterning + +The multiple patterning approach adds few mechatronics challenges: +- Position accuracy limited to ~4nm due to interferoemter position measurement (variation of temperature/pressure of air) +- Stage swap is complex and time-consuming + +This was solved by: +- Using encoder instead of interferometers +- Use long stroke motor: h-stage => new wafer stage concept + +** Machine layout + +Each stage is controlled with 6dof lorentz short stroke actuators (Figure [[fig:asml_machine_layout_bis]]). +The magnet stage can move horizontally (due to reaction forces of the wafer stages): it asks as a balance mass. + +#+name: fig:asml_machine_layout_bis +#+caption: Machine layout +[[file:./figs/asml_machine_layout_bis.png]] + +** EUV Lithography + +Vacuum is required which implies: +- no bearings +- no cooling + +All the optics are reflective: +- extremely accurately polished +- challenge: keep mirrors optimally positioned + +Wafer stage: +- Move at high speed and accelerations +- Challenge: in vaccum +- Solved by: machanically suspended balance mass, and interferoemter position meaured can be used because it is in vacuum now + +#+name: fig:asml_euv +#+caption: Schematic of the ASML EUV machine +[[file:./figs/asml_euv.png]] + +** The future: high-NA EUV + +#+name: fig:asml_na_euv +#+caption: The CD will be 8nm +[[file:./figs/asml_na_euv.png]] + +In order to do so, high "opening" of the optics is required which is very challenges because the reflectiveness of mirror is decreasing as high angle of incidence (Figure [[fig:asml_reflection_angle]]). + +#+name: fig:asml_reflection_angle +#+caption: Change of reflection of a mirror as a function of the angle of indicence +[[file:./figs/asml_reflection_angle.png]] + +** Challenges for future Optical Lithography machines + +*Challenges*: +- Double wafer stage acceleration +- Much bigger mirrors +- Tighter accuracy specifications despite + +*Solutions*: +- Stage and mirror dynamics, high bandwidth control +- Dynamics architecture: improved isolation, multiple isolate sets +- Heating compensation + +** Conclusion +The conclusions are: +- Lithographic tools are the main enabler for over shrinking device sizes +- New (optical) requirements lead to new mechatronic challenges: + - Larger fields / better imaging: from stepping to scanning + - Larger wafer size: dual stage scanners + - Immersion: wafer stage & hood control + - Multiple patterning: planar motors and encoder technology + - EUV: all-vacuum stages + - High-NA EUV: new optics, much larger accelerations + +* Designing anti-aliasing-filters for control loops of mechatronic systems regarding the rejection of aliased resonances :@ulrich_schonhoff: +** The phenomenon of aliasing of resonances +Weakly damped flexible modes of the mechanism can limit the performance of motion control systems. + +For discrete time controlled systems, there can be an additional limitation: aliased resonances which are rarely discussed. + +#+name: fig:aliasing_resonances +#+caption: Example of high frequency lighlty damped resonances +[[file:./figs/aliasing_resonances.png]] + +The aliasing of signals is well known (Figure [[fig:aliasing_signals]]). + +However, aliasing in systems can also happens and is schematically shown in Figure [[fig:aliasing_system]]. + +#+name: fig:aliasing_signals +#+caption: Aliasing of Signals +[[file:./figs/aliasing_signals.png]] + +#+name: fig:aliasing_system +#+caption: Aliasing of Systems +[[file:./figs/aliasing_system.png]] + +The poles of the system will be aliased and their location will change in the complex plane as shown in Figure [[fig:aliasing_poles]]. + +More precisely: +- the imaginary parts of the poles mirror about the Nyquist frequency +- the real parts of the poles remain equal + +Therefore, the damping of the aliased resonances are foreseen to have larger dampings. + +#+name: fig:aliasing_poles +#+caption: Aliasing of poles in the complex plane +[[file:./figs/aliasing_poles.png]] + +Let's consider two systems with a resonance: +1. below the Nyquist frequency (blue dashed) +2. above the Nyquist frequency (green dashed) + +Then looking at the same systems in the digital domain, one can see thathen the resonance is above the Nyquist frequency (Figure [[fig:aliasing_above_nyquist]]): +- the resonance mirrors +- the damping is increased + +Therefore, when identifying a low damped resonance, it could be that it comes form a high frequency low damped resonance. + +#+name: fig:aliasing_above_nyquist +#+caption: Aliazed resonance shown on the Bode Diagram +[[file:./figs/aliasing_above_nyquist.png]] + +#+name: fig:alising_much_above_nyquist +#+caption: Higher resonance frequency +[[file:./figs/alising_much_above_nyquist.png]] + +** Nature, Modelling and Mitigation of potentially aliasing resonances +The aliased modes can for instance comes from local modes in the actuators that are lightly damped and at high frequency (Figure [[fig:alising_nature]]) + +#+name: fig:alising_nature +#+caption: Local vibration mode that will be alized +[[file:./figs/alising_nature.png]] + +The proposed idea to better model aliasing resonances is to include more modes in the FEM software as shown in Figure [[fig:aliasing_modeling]] and then perform an order reduction in matlab. + +#+name: fig:aliasing_modeling +#+caption: Common procedure and proposed procedure to include aliazed resonances +[[file:./figs/aliasing_modeling.png]] + +** Anti aliasing filter design +*** Introduction + +- Anti-aliasing filtering can be used to reject aliasing of resonances and to maintain the stability of the control loop +- However, its phase lag deteriorates the control loop performances: + - phase margin decreases (Figure [[fig:alising_filter_introduction]]) + - sensitivity peak increases (Figure [[fig:aliasing_sensitivity_effect]]) +- Thus, the anti-aliasing filter should be targeted at sufficient rejection at least possible phase lag + +#+name: fig:alising_filter_introduction +#+caption: Example of the effect of aliased resonance on the open-loop +[[file:./figs/alising_filter_introduction.png]] + +#+name: fig:aliasing_sensitivity_effect +#+caption: Example of the effect of aliased resonance on sensitivity function +[[file:./figs/aliasing_sensitivity_effect.png]] + +*** Concept of equivalent delay + +*Concept*: +- At frequencies well below its poles and zeros, a continuous time filter $F(j\omega)$ shows almost linear phase: + \begin{equation} + \arg\big( F(j\omega) \big) \approx -T_e \omega + \end{equation} +- Thus, *the phase lag of the filter can be fairly correctly represented by a time delay (below the pole frequency)*. + The equivalent delay is: + \begin{equation} + T_e = \sum_{i=1}^{N_p} \frac{\xi_{pi}}{\omega_{0pi}} - \sum_{i=1}^{N_z} \frac{\xi_{zi}}{\omega_{0zi}} + \end{equation} +- where $\omega_{0pi}$ is the natural frequency $\xi_{pi}$ is the damping of the $N_p$ poles of $F(s)$. + Similarly, $\omega_{0zi}$ is the natural frequency $\xi_{zi}$ is the damping of the $N_z$ zeros of $F(s)$. + +*Examples* (Figure [[fig:aliasing_equivalent_delay]]): +- First order low pass filter: + \[ \xi_p = 1 \Rightarrow T_e = \frac{1}{\omega_c} \] +- Second order Butterworth low pass filter: + \[ \xi_p = \frac{1}{\sqrt{2}} \Rightarrow T_e = \sqrt{2} \frac{1}{\omega_c} \] +- First order lead: + \[ \xi_z = 1 \Rightarrow T_e = - \frac{1}{\omega_c} \] + +#+name: fig:aliasing_equivalent_delay +#+caption: Magnitude, Phase and Phase delay of 3 filters +[[file:./figs/aliasing_equivalent_delay.png]] + +*** Budgeting of phase lag +The budgeting of the phase lag is done by expressing the phase lag of each element by a time delay (Figure [[fig:aliasing_budget_phase]]) + +#+name: fig:aliasing_budget_phase +#+caption: Typical control loop with several phase lag / time delays +[[file:./figs/aliasing_budget_phase.png]] + +The equivalent delay of each element are listed in Figure [[fig:aliasing_budget_table]]. + +#+name: fig:aliasing_budget_table +#+caption: Equivalent delay for all the elements of the control loop +[[file:./figs/aliasing_budget_table.png]] + +*** Selecting the filter order + +The filter order can be chosen depending on the frequency of the resonance. +Some example of Butterworth filters are shown in Figure [[fig:aliasing_filter_order_bode]] and summarized in Figure [[fig:aliasing_filter_order_table]]. + +#+name: fig:aliasing_filter_order_bode +#+caption: Example of few Butterworth filters +[[file:./figs/aliasing_filter_order_bode.png]] + +#+name: fig:aliasing_filter_order_table +#+caption: Butterworth filters +[[file:./figs/aliasing_filter_order_table.png]] + +*** Reducing the phase lag +The equivalent delay of a low pass (here second order) depends on its damping, since: +\[ T_e = -2 \frac{\xi_{zi}}{\omega_{0zi}} \] + +#+name: fig:aliasing_reduce_phase_lag +#+caption: Change of the phase delay with the damping of the filter +[[file:./figs/aliasing_reduce_phase_lag.png]] + +** Conclusion + +The phenomenon of aliasing of resonances: +- Aliasing of resonances is an issue in discrete-time controlled mechatronic systems and *can limit the performance* and even *render the closed loop system unstable* +- Resonances above the Nyquist Frequency appear *aliased* at mirrored frequency for the discrete-time controller +- Aliased resonances show *increased damping* compared to the original resonances +- To find out if a resonance is an aliased one or not, change the sampling frequency and see if the frequency of the resonance is changing or not + + +Nature, modelling and mitigation of potentially aliasing resonances: +- The origin are typically local resonances of the sensor and actuator components +- Careful modelling and selecting dominant modes above the Nyquist frequency is commended + + +Anti-aliasing filter design: +- Anti-Aliasing filter design is the *trade-off between rejection and phase-lag* +- The concept of *equivalent delay* allows to budget and design the phase lag +- The order selection of anti alising-filter based on the required rejection is shown +- Several approaches to reduce overall phase lag are presented + +* Flexure positioning stage based on delta technology for high precision and dynamic industrial machining applications :@mikael_bianchi: +** Introduction + +- *Goal*: flexure positioning stage to do high precision and high dynamic/acceleration positioning. + The control architecture should be as simple as possible. +- *Application*: micromachinign for fabrication of 3d structures +- *Possible field*: watch industry, electronics, optics, ... +- *Possible technologies*: laser, milling, electro discharge machine +- *Objectives*: improve the productivity reaching high accelerations at high precision + +** Design +*** Description of the Delta robot + +*Technical choice*: flexure based delta robot (Figure [[fig:flexure_delta_robot]]). +- Advantages: high mechanical precision without backlash +- Disadvantage: the motion is coupled, some transformations are required from motor coordinates to machine coordinates (Figure [[fig:flexure_delta_robot_schematic]]) + +#+name: fig:flexure_delta_robot +#+caption: Picture of the Delta Robot +[[file:./figs/flexure_delta_robot.png]] + +#+name: fig:flexure_delta_robot_schematic +#+caption: x1, x2 x3 are the motor positions. f1,f2 f3 are the force motors. x,y,z are the position of the final point in cartesian coordinates +[[file:./figs/flexure_delta_robot_schematic.png]] + +*** Modelling and validation of the delta robot + +Lagrange equations are used to model the dynamics of the delta robot. +The motor positions are used as the general coordinate system. + +The system is then linearized around the working point (Figure [[fig:flexure_equations]]). + +#+name: fig:flexure_equations +#+caption: Linearized equations of the Delta Robot +[[file:./figs/flexure_equations.png]] + +Then the parameters are identified from experiment (Figure [[fig:flexure_identification]]). + +#+name: fig:flexure_identification +#+caption: Identification fo the transfer function from $F_1$ to $x_1$ +[[file:./figs/flexure_identification.png]] + +The measurement of the coupling is move complicated as shown in Figure [[fig:flexure_identification_coupling]]. + +#+name: fig:flexure_identification_coupling +#+caption: Problem of identifying the coupling between F1 and x2 at low frequency +[[file:./figs/flexure_identification_coupling.png]] + +*** Control design for high trajectory tracking + +Control requirements: +- Precise position control of the coupled system (+/-10nm steps) +- Minimal trajectory error at high frequency (+/- 100nm at +/- 1g acceleration) +- Higher resonances attenuation +- Whole motion system is considered as a standard cartesian XYZ axes for the user (do the inverse/forward kinematics inside the control architecture) + +#+name: fig:flexure_control_concept +#+caption: Control concept used for the Delta robot +[[file:./figs/flexure_control_concept.png]] + +*** Electronic board +A 3 axis servo control board as been developed (Figure [[fig:flexure_electronics_board]]) which includes: +- identification algorithm of the coupled system integrated in the board +- interpolator for sensors + +#+name: fig:flexure_electronics_board +#+caption: Servo control board +[[file:./figs/flexure_electronics_board.png]]] + +** Results +*** Current control + +Step response of the current control loop is shown in Figure [[fig:flexure_current_control_results]]. + +#+name: fig:flexure_current_control_results +#+caption: Step response for the current control loop +[[file:./figs/flexure_current_control_results.png]] + +*** Trajectory tracking: results with laser interferometer and encoder + +XY renishaw interferometers used to verify the performance of the system (Figure [[fig:flexure_sensors]]). + +#+name: fig:flexure_sensors +#+caption: Experimental setup to verify the performances of the system +[[file:./figs/flexure_sensors.png]] + +Some results are shown in Figures [[fig:flexure_results]], [[fig:flexure_steps]] and [[fig:flexure_dynamics_errors]]. + +#+name: fig:flexure_results +#+caption: Circuit motion results and point to point motion results +[[file:./figs/flexure_results.png]] + +#+name: fig:flexure_steps +#+caption: Step response of the system +[[file:./figs/flexure_steps.png]] + +#+name: fig:flexure_dynamics_errors +#+caption: Measured dynamical errors +[[file:./figs/flexure_dynamics_errors.png]] + +** Conclusion + +As a conclusion, here are the identified conditions for precise and high dynamic positioning: +- Mechanics *without backlash* and *resonances in higher frequency* +- *Feedforward* with correct parameters +- *High bandwidth* position control and precise encoder +- Low noise current sensors and high bandwidth current control + +Resonances at mid frequencies are an issue for further improvements. + +* Multivariable performance analysis of position-controlled payloads with flexible eigenmodes :@luca_mettenleiter: +** Motivation + +Flexible eigenmodes are present in every system component and leads to:: +- controller bandwidth limitation (Figure [[fig:mimo_flexible_modes]]) +- additional cross-coupling in the system behavior (Figure [[fig:mimo_flexible_modes_coupling]]) + +=> can lead to stability problems + +#+name: fig:mimo_flexible_modes +#+caption: Limitation of the control bandwidth due to flexible eigenmodes +[[file:./figs/mimo_flexible_modes.png]] + +#+name: fig:mimo_flexible_modes_coupling +#+caption: Coupling due to flexible eigenmodes +[[file:./figs/mimo_flexible_modes_coupling.png]] + +In order to estimate the performances of a system, the sensitivity function can be used (Figure [[fig:mimo_sensitivity_performance]]). + +#+name: fig:mimo_sensitivity_performance +#+caption:Bode plot of a typical Sensitivity function +[[file:./figs/mimo_sensitivity_performance.png]] + +** Performance analysis with different sensitivity functions + +There are different way to analyse the sensitivity function base on different plants (Figure [[fig:mimo_sensitivity_functions]]): +1. the *full system* (complicated): + \[ L_{full} = \begin{bmatrix}L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \] +2. the *diagonal system* (ignoring interaction) + \[ L_{diag} = \begin{bmatrix}L_{11} & 0 \\ 0 & L_{22} \end{bmatrix} \] +3. the *loop interaction system* (the one proposed here) + \[ L^{LI} = \begin{bmatrix}L_1^{LI} & 0 \\ 0 & L_2^{LI} \end{bmatrix} \] + +The loop interaction methods created a SISO system that also represents the coupling in the system. +One loop is closed at a time, and the coupling effects are taken into account. + +#+name: fig:mimo_sensitivity_functions +#+caption: Visual representation of the three systems +[[file:./figs/mimo_sensitivity_functions.png]] + +** Example system +In order to compare the use of the three systems to estimate the performances of a MIMO system, the system shown in Figure [[fig:mimo_example_system]] is used. +The 4 top masses are used to represent a payload that will add coupling in the system due to its resonances. + +A diagonal PID controller is used. + +#+name: fig:mimo_example_system +#+caption: Schematic representation of the example system +[[file:./figs/mimo_example_system.png]] + + +The bode plot of the MIMO system is shown in Figure [[fig:mimo_example_bode]] where we can see the resonances in the off-diagonal elements. + +#+name: fig:mimo_example_bode +#+caption: Bode plot of the full MIMO system +[[file:./figs/mimo_example_bode.png]] + +In Figure [[fig:mimo_example_sensitivity]] is shown that the sensitivity function computed from the SISO system is not correct. +Whereas for the "interaction method" system, it is correct and almost match the full system sensibility. +However, as expected, the off-diagonal sensibilities are not modelled. + +#+name: fig:mimo_example_sensitivity +#+caption: Bode plots of sensitivity functions +[[file:./figs/mimo_example_sensitivity.png]] + +** Conclusion + +The conclusion are the following and summarized in Figure [[fig:mimo_results]]: +- Choice of suitable analysis method is key concept in mechatronics engineering +- Various methods for analysis of multivariable systems available: + - Full system always delivers reliable information, but much analysis effort + - Loop interaction method delivers reliable information, only if the system is weakly or symmetrically coupled + - Diagonal system delivers unreliable information, as it does not take multivariable character into account + + +#+name: fig:mimo_results +#+caption: Comparison of the three methods to deal with a MIMO system +[[file:./figs/mimo_results.png]] + +* High-precision motion system design by topology optimization considering additive manufacturing :@arnoud_delissen: +** Introduction + +The goal of this project is to perform a topology optimization of a 6dof magnetic levitated stage suitable for vacuum. + +For the current system (Figure [[fig:mimoopt_6dof_stage]]), the bandwidth is limited by the short-stroke dynamics (eigenfrequencies). + +The goal here is to make the eigen-frequency higher as this will allow more bandwidth. + +#+name: fig:mimoopt_6dof_stage +#+caption: Schematic of the 6dof levitating stage +[[file:./figs/mimoopt_6dof_stage.png]] + +** Case + +More precisely, the goal is to automatically maximize the three eigen-frequencies of the system shown in Figure [[fig:mimoopt_case]]. + +#+name: fig:mimoopt_case +#+caption: System to be optimized +[[file:./figs/mimoopt_case.png]] + +** Manufacturing process + +The manufacturing process must be embedded in the optimization such that the obtained design is producible. +The process is shown in Figure [[fig:mimoopt_process]]. + +#+name: fig:mimoopt_process +#+caption: Manufacturing process +[[file:./figs/mimoopt_process.png]] + +** Topology optimization + +*Problem*: for a given volume, maximize the eigen-frequencies of the system. + +To do so, the system is discretized into small elements (Figure [[fig:mimoopt_3d_opti]]). +Then, a Finite Element Analysis is performed to compute the eigen-frequencies of the system. +Finally, for each element, the "gradient is computed" and we determine if material should be added or removed. + +This is done in 3D. The individual 1mm x 1mm x 1mm elements are shown in Figure [[fig:mimoopt_3d_opti]]. +The number of elements is 1 million (=> 15 minutes per iteration to compute the 3 eigen-frequencies). + +#+name: fig:mimoopt_3d_opti +#+caption: Results of the topology optimization and zoom to see individual elements +[[file:./figs/mimoopt_3d_opti.png]] + +** Performance Comparison + +The obtained mass and eigen-frequencies of the optimized system and the solid equivalents are compared in Figure [[fig:mimoopt_performance]]. + +#+name: fig:mimoopt_performance +#+caption: Comparison of the obtained performances +[[file:./figs/mimoopt_performance.png]] + +Identification on the realized system shown that the obtained eigen-frequencies are very closed to the estimated ones (Figure [[fig:mimoopt_frf_identification]]). + +#+name: fig:mimoopt_frf_identification +#+caption: Results very close to simulation (~1% for the eigen frequencies) +[[file:./figs/mimoopt_frf_identification.png]] + +** Conclusion + +- Increase in performance (~2x) compared to solid designs +- A design is obtained in ~ 1 day +- Practical constraints are incorporated in the optimization +- The method is validated in practice by a demonstrator + +* A multivariable experiment design framework for accurate FRF identification of complex systems :@nic_dirkx: +** Introduction +*Goal*: Need for higher quality FRF models that are used to: +- Controller design +- Observer design +- System diagnostics +- Parametric modelling + +High quality FRFs requires careful design of excitation $w$. + +Typical experimental identification of the FRFs is shown in Figure [[fig:frf_introduction]]. + +The design trade-off is: +- Maximize input gain to minimize FRF uncertainty +- Bounded signal $u$ and $y$ to remain within operating limited (actuator/amplifier power limitations and limited move ranges) + +#+name: fig:frf_introduction +#+caption: schematic of the identification of the FRF +[[file:./figs/frf_introduction.png]] + +For SISO systems: +- Only the frequency size of the excitation signal should be optimized + +For MIMO systems: +- the gains and *directions* should be frequency wise optimized + +*Objective*: +- establish optimal experiment design framework that optimize the excitation signal to obtain MIMO FRFs with low uncertainty + +** Role of directions and constrains in multivariable excitation design + +The classical way to estimate MIMO FRFs is the following: +- First start with one direction and increase the gain until constrains is attained (Figure [[fig:frf_direction_excitation]]) +- Do the same with the second input + +This lead to non-optimal FRFs estimation. + +#+name: fig:frf_direction_excitation +#+caption: Example of a SISO approach to identify MIMO FRFs +[[file:./figs/frf_direction_excitation.png]] + +When having a MIMO approach and choosing both the direction and gain of the excitation inputs, we can obtained much better FRFs uncertainty while still fulfilling the constraints (Figure [[fig:frf_mimo]]). + +#+name: fig:frf_mimo +#+caption: Example of the MIMO approach that gives much better FRFs +[[file:./figs/frf_mimo.png]] + +** Solving the optimization problem +The optimization problem is to minimize the model uncertainty by choosing the design variables which are the magnitude and direction of the inputs $w$. + +The optimization is a two step process as shown in Figure [[fig:frf_optimization_steps]]: +1. first identification without optimization that allows to have data to run the optimization process +2. second identification with optimized input direction and gain + +The problem with this optimization problem is that it is not convex in general and has a log of design variables. +There is no general methods to solve this problem, a dedicated algorithm is required. + +In this work, two algorithms are proposed and not further detailed here. + +#+name: fig:frf_optimization_steps +#+caption: Two step optimization process +[[file:./figs/frf_optimization_steps.png]] + +** Experimental validation +Experimental identification of a 7x8 MIMO plant was performed in for different cases: +1. non optimized SISO approach (grey) +2. optimized SISO approach (blue) +3. optimized MIMO approach using SSDR (first algorithm proposed) (green) +4. optimized MIMO approach using RR (second algorithm proposed) (red) + +The obtained FRFs are shown in Figure [[fig:frf_experiment]]. + +#+name: fig:frf_experiment +#+caption: Obtained MIMO FRFs +[[file:./figs/frf_experiment.png]] + +A comparison of one of the obtained FRFs is shown in Figure [[fig:frf_experiment_optimized]]. +It is quite clear that the MIMO approach can give much lower FRF uncertainty. +The RR proposed algorithm is giving the best results + +#+name: fig:frf_experiment_optimized +#+caption: Example of one of the obtained FRF +[[file:./figs/frf_experiment_optimized.png]] + +** Conclusion + +- The uncertainty of the obtained FRF are obtained by doing several experimental identification with a deterministic input signal. + The FRF are computed multiple times, and the spread of the results at each frequency represents this uncertainty. +- Exploiting directionality in excitation design enables significant FRF quality improvement +- Multivariable design involves hard non-convex optimization problem +- Computationally tractable design framework for large scale MIMO systems established +- Near global optimal quality achieved on wafer stage setup using RR algorithm + +* Keynote: High precision mechatronic approaches for advanced nanopositioning and nanomeasuring technologies :@eberhard_manske: +** Coordinate Measurement Machines (CMM) + +Examples of Nano Coordinate Measuring Machines are shown in Figure [[fig:prec_cmm]]. + +#+name: fig:prec_cmm +#+caption: Example of Coordinate Measuring Machines +[[file:./figs/prec_cmm.png]] + +** Difference between CMM and nano-CMM +With classical CMM, the Abbe-principle is not fulfilled in the x and y directions (Figure [[fig:prec_cmm_nano_cmm]]). + +The Abbe error can be determined with: +\begin{equation} + \Delta l_{x,y,z} = l_{x,y,z} \sin \Delta \phi_{x,y,z} +\end{equation} + +Even with the best spindle: $l_{x,y} = 100 mm$ and $\Delta \phi = 2 \text{arcsec}$, we obtain an error of: +\begin{equation} + \Delta l = 0.1 \mu m +\end{equation} +which is not compatible with nano-meter precisions. + +Then, the classical CMM will not work for nano precision + +#+name: fig:prec_cmm_nano_cmm +#+caption: +[[file:./figs/prec_cmm_nano_cmm.png]] + +** How to do nano-CMM + +High precision mechatronic approaches are required for advanced nano-positionign and nano-measuring technologies: +- High precision measurement concept +- High precision measurement systems +- High precision nano-sensors +Combined with: +- Advanced automatic control +- Advanced measuring strategies + +** Concept - Minimization of the Abbe Error + +In order to minimize the Abbe error, the measuring "lines" should have a common point of intersection (Figure [[fig:prec_nano_cmm_concept]]). + +The 3D-realization of Abbe-principle is as follows: +- 3 interferometers: cartesian coordinate system +- probe located as the intersection point of the interferometers + +#+name: fig:prec_nano_cmm_concept +#+caption: Error minimal measuring principle +[[file:./figs/prec_nano_cmm_concept.png]] + +** Minimization of residual Abbe error + +Still some residual Abbe error can happen as shown in Figure [[fig:prec_abbe_min]] due to both a change of angle and change of position. + +#+name: fig:prec_abbe_min +#+caption: Residual Abbe error +[[file:./figs/prec_abbe_min.png]] + +** Compare of long travel guiding systems + +In order to have the Abbe error compatible with nano-meter precision, the precision of the spindle should be less and one arcsec which is not easily feasible with air bearing of precision roller bearing technologies as shown in Figure [[fig:prec_comp_guid]]. + +#+name: fig:prec_comp_guid +#+caption: Characteristics of guidings +[[file:./figs/prec_comp_guid.png]] + +** Extended 6 DoF Abbe comparator principle + +The solution used was to measure in real time the angles of the frame using autocollimators as shown in Figure [[fig:prec_6dof_abbe]] and then to minimize this tilt by close loop operation with additional actuators. + +The angular measurement error and control is less than $0.05 \text{arcses}$ which make the residual Abbe error: +\begin{equation} + \Delta l < 0.05\,nm +\end{equation} + +Without an error-minimal approach, nano-meter precision cannot be achieved in large areas. + +#+name: fig:prec_6dof_abbe +#+caption: Use of additional autocollimator and actuators for Abbe minimization +[[file:./figs/prec_6dof_abbe.png]] + +** Practical Realisation + +A practical realization of the Extended 6 DoF Abbe comparator principle is shown in Figure [[fig:prec_practical_6dof]]. + +#+name: fig:prec_practical_6dof +#+caption: Practical Realization of the +[[file:./figs/prec_practical_6dof.png]] + +** Tilt Compensation + +To measure compensate for any tilt, two solutions are proposed: +1. Use a zero point angular auto-collimator (Figure [[fig:prec_tilt_corection]]) + - Resolution: 0.005 arcsec + - Stability (1h): < 0.05 arcsec +2. 6 DoF laser interferoemter (Figure [[fig:prec_tilt_corection_bis]]) + - Resolution: 0.00002 arcsec + - Stability (1h): < 0.00005 arcsec + +#+name: fig:prec_tilt_corection +#+caption: Auto-Collimator +[[file:./figs/prec_tilt_corection.png]] + +#+name: fig:prec_tilt_corection_bis +#+caption: 6 Interferometers to measure tilts +[[file:./figs/prec_tilt_corection_bis.png]] + +** Comparison of long travail guiding systems - Bis + +Now, if we actively compensate the tilts are shown previously, we can fulfill the requirements as shown in Figure [[fig:prec_comp_guid_bis]]. + +*Measurement and control technology to minimize Abbe errors to achieve*: +- sub-nanometer precision +- smaller moving mass +- better dynamics + +#+name: fig:prec_comp_guid_bis +#+caption: Characteristics of the tilt compensation system +[[file:./figs/prec_comp_guid_bis.png]] + +** Drive concept + +Usually, in order to achieve a large range over small resolution, each axis of motion is a combination of a coarse motion and a fine motion stage. +The coarse motion stage generally consist of a stepper motor while the fine motion is a piezoelectric actuator. + +The approach here is to use an *homogenous drive concept for increase dynamics* (Figure [[fig:prec_drive_concept]]). + +Only one linear voice coil actuator is used which with large moving range and sub-nanometer resolution can be achieve at one time. + +#+name: fig:prec_drive_concept +#+caption: Voice Coil Actuator +[[file:./figs/prec_drive_concept.png]] + + +** NPMM-200 with extended measuring volume + +The NPMM-200 machine can be seen in Figure [[fig:prec_mechanics]]. + +Characteristics: +- Measuring range: 200 mm x 200 mm x 25 mm +- Resolution: 20 pm +- Abbe comparator principle +- 6 laser interferometers +- Active angular compensation +- Position uncertainty < 4 nm +- Measuring uncertainty up to 30 nm + +#+name: fig:prec_mechanics +#+caption: Picture of the NPMM-200 +[[file:./figs/prec_mechanics.png]] + +The NPMM-200 actually operates inside a Vacuum chamber as shown in Figure [[fig:prec_vacuum_cham]]. + +#+name: fig:prec_vacuum_cham +#+caption: Vacuum chamber used +[[file:./figs/prec_vacuum_cham.png]] + +** measurement capability + +Some step responses are shown in Figure [[fig:prec_results_meas]] and show the nano-metric precision of the machine. + +#+name: fig:prec_results_meas +#+caption: Sub nano-meter position accuracy +[[file:./figs/prec_results_meas.png]] + +Picometer steps can even be achieved as shown in Figure [[fig:prec_results_pico]]. + +#+name: fig:prec_results_pico +#+caption: Picometer level control +[[file:./figs/prec_results_pico.png]] + +** Extension of the measuring range (700mm) + +If the measuring range is to be increase, there are some limits of the moving stage principle: +- large moving masses (~300kg) +- powerful drive systems required +- nano-meter position capability problematic +- large heat dissipation in the system +- dynamics and dynamic deformation + +The proposed solution is to use *inverse dynamic concept for minimization of moving masses*. + +** Inverse kinematic concept - Tetrahedrical concept + +The proposed concept is shown in Figure [[fig:prec_inverse_kin]]: +- mirrors and object to be measured are fixed +- probe and interferometer heads are moved +- laser beams virtually intersect in the probe tip +- Tetrahedrical measuring volume + +This fulfills the Abbe principe but: +- large construction space +- difficult guide and drive concept + +#+name: fig:prec_inverse_kin +#+caption: Tetrahedrical concept +[[file:./figs/prec_inverse_kin.png]] + +** Inverse kinematic concept - Scanning probe principle + +An other concept, the scanning probe principle is shown in Figure [[fig:prec_inverse_kin_scan]]: +- cuboidal measuring volume +- Fixed x-y-z mirrors +- moving measuring head +- guide and drive system outside measuring volume + +#+name: fig:prec_inverse_kin_scan +#+caption: Scanning probe principle +[[file:./figs/prec_inverse_kin_scan.png]] + +** Inverse kinematic concept - Compact measuring head + +In order to minimize the moving mass, compact measuring heads have been developed. +The goal was to make a lightweight measuring head (<1kg) + +The interferometer used are fiber coupled laser interferometers with a mass of 37g (Figure [[fig:prec_interferometers]]). + +#+name: fig:prec_interferometers +#+caption: Micro Interferometers +[[file:./figs/prec_interferometers.png]] + +The concept is shown in Figure [[fig:prec_inverse_meas_head]]: +- 6dof interferometers are used +- one micro-probe +- the total mass of the head is less than 1kg + +There is some abbe offset between measurement axis of probe and of interferometer but *Abbe error compensation by closed loop control of angular deviations* is used. + +#+name: fig:prec_inverse_meas_head +#+caption: +[[file:./figs/prec_inverse_meas_head.png]] + +** Inverse kinematic concept - Scanning probe principle + +As shown in Figure [[fig:prec_abbe_compensation]], the abbe error can be compensated from the two top interferometers as: +\[ \text{for } l_x = a: \quad \Delta l_{\text{Abbe}} = \Delta l_{\text{int}} \] +Thus the tilt and Abbe errors can be compensated for with sub-nm resolution. + +#+name: fig:prec_abbe_compensation +#+caption: Use of the interferometers to compensate for the Abbe errors +[[file:./figs/prec_abbe_compensation.png]] + +** Conclusion + +Proposed approaches to push the nano-positioning and nano-measuring technology: +- Measurement and control technology to minimize Abbe errors +- Homogeneous drive concept for increased dynamics +- Inverse kinematic concept for minimization of moving mass +- Abbe-error compensation by closed loop control of angular deviations + +* Reducing control delay times to enhance dynamic stiffness of magnetic bearings :@jan_philipp_schmidtmann: + +This projects focuses on reducing the control delay times of a magnetic bearing shown in Figure [[fig:magn_bear_intro]]. + +#+name: fig:magn_bear_intro +#+caption: 6 DoF Position System - Concept +[[file:./figs/magn_bear_intro.png]] + +Active magnetic bearings are unstable systems and require active control. +However, the active control of magnet forces leads to a control delay that limits the performances (stiffness) of the bearing. + +Typical contributors to the control delay time are shown in Figure [[fig:magn_bear_delay]]. + +#+name: fig:magn_bear_delay +#+caption: Typical Contributors to control delay time +[[file:./figs/magn_bear_delay.png]] + +The reduction of the control time delay will increase the dynamic stiffness of the bearing as well as decrease the effects of external disturbances and hence improve the positioning errors (Figure [[fig:magn_bear_distur]]). + +The steps to reduce the control delay time are: +1. Eliminate BUSS-communication by merging position and current controller +2. Reduce cycle time by using rapid prototyping system +3. Reduce delay in PWM driver by using high PWM frequencies with SiC driver + +#+name: fig:magn_bear_distur +#+caption: The effect of control delay on stiffness +[[file:./figs/magn_bear_distur.png]] + +Therefore, the position and current control have been merged into one controller (Figure [[fig:magn_controller]]). + +#+name: fig:magn_controller +#+caption: Controller for position and current +[[file:./figs/magn_controller.png]] + +A dSpace rapid prototyping system is used for fast position and current control. +Characteristics of the used elements are shown in Figure [[fig:magn_bear_setup]]. + +#+name: fig:magn_bear_setup +#+caption: Setup for reduced delay times +[[file:./figs/magn_bear_setup.png]] + +Differences between the previous PWM controller and the new SiC controller are shown in Figure [[fig:magn_bear_results]]. +The delay time is almost completely eliminated. + +#+name: fig:magn_bear_results +#+caption: Reduction of delay in PWM Driver +[[file:./figs/magn_bear_results.png]] + +Due to all the performed modifications, the control delay time could be reduced by 80%. +The next steps for this project are shown in Figure [[fig:magn_bear_conclusion]]. + +#+name: fig:magn_bear_conclusion +#+caption: Next Steps +[[file:./figs/magn_bear_conclusion.png]] + +* Digital twins in control: From fault detection to predictive maintenance in precision mechatronics :@koen_classens: +** Motivation + +Models are usually for the control design part that can be either physical models (FEM, first principle) or data-driven models. +However, these models are usually not used after control system is implemented (Figure [[fig:twins_motivation]]). + +#+name: fig:twins_motivation +#+caption: Typical of of models in a mechatronic system +[[file:./figs/twins_motivation.png]] + +Here, the models are exploited to monitor the system and predict future possible failures in the system. +Use models as digital twin for *fault detection and Isolation for predictive maintenance in precision mechatronics* (Figure [[fig:twing_fdi]]). + +#+name: fig:twing_fdi +#+caption: FDI is using the model of the plant +[[file:./figs/twing_fdi.png]] + +** Predictive Maintenance +Classical maintenance happens when the system is not working anymore as shown in Figure [[fig:twins_predictive_maintenance]]. + +#+name: fig:twins_predictive_maintenance +#+caption: Maintenance done when a failure is appearing +[[file:./figs/twins_predictive_maintenance.png]] + +It is possible to perform some preventive maintenance before a failure happens, but this is still not optimal. + +#+name: fig:twins_predictive_maintenance_bis +#+caption: Preventive Maintenance +[[file:./figs/twins_predictive_maintenance_bis.png]] + +The idea here is to predict when the failure will happen in order to only do maintenance only when really necessary. +This will minimize the down time of the machine. + +#+name: fig:twins_predictive_maintenance_ter +#+caption: Predictive maintenance +[[file:./figs/twins_predictive_maintenance_ter.png]] + +** Objectives + +The main objective is to develop a system monitoring approach for precision mechatronic systems, exploiting prior information (models) and integrating posterior information (real-time measured data). + +Even though state of the art system monitoring are already in used in aerospace, process industry and automotive, there are few specificity for mechatronic systems: +- Control loops +- Large-scale MIMO systems (interaction) +- Accurate models: Frequency Response Functions + + +** Null-space based FDI + +The goal is to applied a decentralized Fault Detection on the system shown in Figure [[fig:twings_fdi_test]] to detect actuator faults at $J_1$. +This should take into account the control loop, interaction in the system and be FRF based. + +#+name: fig:twings_fdi_test +#+caption: Test System +[[file:./figs/twings_fdi_test.png]] + +The architecture to estimate faults in the system is shown in Figure [[fig:twins_null_space_fdi]]. +The goal is to design $Q_u$ and $Q_y$ such that $\epsilon$ is a representation of faults in the system. + +#+name: fig:twins_null_space_fdi +#+caption: Residual Generator +[[file:./figs/twins_null_space_fdi.png]] + +When a fault happens (Figure [[fig:twins_results_fdi]]), the outputs signals are not changing that much (because of feedback), however the system is able to find that there is a problem using the residual $\epsilon$. + +#+name: fig:twins_results_fdi +#+caption: Simulation Results +[[file:./figs/twins_results_fdi.png]] + +*Procedure*: +- Additive faults +- Closed-loop +- Interaction +- start from identification + +** Roadmap from fault detection to predictive maintenance + +The proposed system can detect faults in the system (Figure [[fig:twins_roadmap]]). +This proof of principle should now be applied on industrial systems. +Moreover, from the fault detection, predictive maintenance should be performed (Figure [[fig:twins_roadmap]]). + +#+name: fig:twins_roadmap +#+caption: From proof of principle to industrial application +[[file:./figs/twins_roadmap.png]] + +#+name: fig:twins_roadmap_bis +#+caption: From fault detection to predictive maintenance +[[file:./figs/twins_roadmap_bis.png]] +