#+TITLE: Encoder - Test Bench
:DRAWER:
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :tangle script.m
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Experimental Setup
The experimental Setup is schematically represented in Figure [[fig:exp_setup_schematic]].
The mass can be vertically moved using the amplified piezoelectric actuator.
The displacement of the mass (relative to the mechanical frame) is measured both by the interferometer and by the encoder.
#+name: fig:exp_setup_schematic
#+caption: Schematic of the Experiment
[[file:figs/exp_setup_schematic.png]]
#+name: fig:encoder_side_view
#+caption: Side View of the encoder
[[file:figs/IMG_20201023_153905.jpg]]
#+name: fig:encoder_front_view
#+caption: Front View of the encoder
[[file:figs/IMG_20201023_153914.jpg]]
* Huddle Test
** Introduction :ignore:
The goal in this section is the estimate the noise of both the encoder and the intereferometer.
Nothing is then to the actuator such that the relative motion between the mass and the frame is as small as possible.
Ideally, a mechanical part would clamp the two together, we here suppose that the APA is still enough to clamp the two together.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Load Data
#+begin_src matlab
load('mat/int_enc_huddle_test.mat', 'interferometer', 'encoder', 't');
#+end_src
#+begin_src matlab
interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0);
#+end_src
** Time Domain Results
#+begin_src matlab :exports none
figure;
hold on;
plot(t, encoder, 'DisplayName', 'Encoder')
plot(t, interferometer, 'DisplayName', 'Interferometer')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/huddle_test_time_domain.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:huddle_test_time_domain
#+caption: Huddle test - Time domain signals
#+RESULTS:
[[file:figs/huddle_test_time_domain.png]]
#+begin_src matlab
G_lpf = 1/(1 + s/2/pi/10);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(t, lsim(G_lpf, encoder, t), 'DisplayName', 'Encoder')
plot(t, lsim(G_lpf, interferometer, t), 'DisplayName', 'Interferometer')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/huddle_test_time_domain_filtered.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:huddle_test_time_domain_filtered
#+caption: Huddle test - Time domain signals filtered with a LPF at 10Hz
#+RESULTS:
[[file:figs/huddle_test_time_domain_filtered.png]]
** Frequency Domain Noise
#+begin_src matlab
Ts = 1e-4;
win = hann(ceil(10/Ts));
[p_i, f] = pwelch(interferometer, win, [], [], 1/Ts);
[p_e, ~] = pwelch(encoder, win, [], [], 1/Ts);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, sqrt(p_i), 'DisplayName', 'Interferometer');
plot(f, sqrt(p_e), 'DisplayName', 'Encoder');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
legend();
xlim([1e-1, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/huddle_test_asd.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:huddle_test_asd
#+caption: Amplitude Spectral Density of the signals during the Huddle test
#+RESULTS:
[[file:figs/huddle_test_asd.png]]
* Comparison Interferometer / Encoder
** Introduction :ignore:
The goal here is to make sure that the interferometer and encoder measurements are coherent.
We may see non-linearity in the interferometric measurement.
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Load Data
#+begin_src matlab
load('mat/int_enc_comp.mat', 'interferometer', 'encoder', 'u', 't');
#+end_src
#+begin_src matlab
interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0);
u = detrend(u, 0);
#+end_src
** Time Domain Results
#+begin_src matlab :exports none
figure;
hold on;
plot(t, encoder, '-', 'DisplayName', 'Encoder')
plot(t, interferometer, '--', 'DisplayName', 'Interferometer')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
xlim([50, 52])
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_one_cycle.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_one_cycle
#+caption: One cycle measurement
#+RESULTS:
[[file:figs/int_enc_one_cycle.png]]
#+begin_src matlab :exports none
figure;
hold on;
plot(t, encoder - interferometer, 'DisplayName', 'Difference')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
xlim([50, 52])
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_one_cycle_error.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_one_cycle_error
#+caption: Difference between the Encoder and the interferometer during one cycle
#+RESULTS:
[[file:figs/int_enc_one_cycle_error.png]]
** Difference between Encoder and Interferometer as a function of time
#+begin_src matlab
Ts = 1e-4;
d_i_mean = reshape(interferometer, [2/Ts floor(Ts/2*length(interferometer))]);
d_e_mean = reshape(encoder, [2/Ts floor(Ts/2*length(encoder))]);
#+end_src
#+begin_src matlab
w0 = 2*pi*5; % [rad/s]
xi = 0.7;
G_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
d_err_mean = reshape(lsim(G_lpf, encoder - interferometer, t), [2/Ts floor(Ts/2*length(encoder))]);
d_err_mean = d_err_mean - mean(d_err_mean);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
for i_i = 1:size(d_err_mean, 2)
plot(t(1:size(d_err_mean, 1)), d_err_mean(:, i_i), 'k-')
end
plot(t(1:size(d_err_mean, 1)), mean(d_err_mean, 2), 'r-')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_error_mean_time.pdf', 'width', 'wide', 'height', 'normal', 'pdf', false);
#+end_src
#+name: fig:int_enc_error_mean_time
#+caption: Difference between the two measurement in the time domain, averaged for all the cycles
#+RESULTS:
[[file:figs/int_enc_error_mean_time.png]]
** Difference between Encoder and Interferometer as a function of position
Compute the mean of the interferometer measurement corresponding to each of the encoder measurement.
#+begin_src matlab
[e_sorted, ~, e_ind] = unique(encoder);
i_mean = zeros(length(e_sorted), 1);
for i = 1:length(e_sorted)
i_mean(i) = mean(interferometer(e_ind == i));
end
i_mean_error = (i_mean - e_sorted);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
% plot(encoder, interferometer - encoder, 'k.', 'DisplayName', 'Difference')
plot(1e6*(e_sorted), 1e9*(i_mean_error))
hold off;
xlabel('Encoder Measurement [$\mu m$]'); ylabel('Measrement Error [nm]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_enc_error_mean_position.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:int_enc_error_mean_position
#+caption: Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles
#+RESULTS:
[[file:figs/int_enc_error_mean_position.png]]
The period of the non-linearity seems to be $1.53 \mu m$ which corresponds to the wavelength of the Laser.
#+begin_src matlab
win_length = 1530; % length of the windows (corresponds to 1.53 um)
num_avg = floor(length(e_sorted)/win_length); % number of averaging
i_init = ceil((length(e_sorted) - win_length*num_avg)/2); % does not start at the extremity
e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init:i_init+win_length*num_avg-1), [win_length num_avg]), 2);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(1e-3*(0:win_length-1), 1e9*(e_sorted_mean_over_period))
hold off;
xlabel('Displacement [$\mu m$]'); ylabel('Measurement Non-Linearity [nm]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/int_non_linearity_period_wavelength.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:int_non_linearity_period_wavelength
#+caption: Non-Linearity of the Interferometer over the period of the wavelength
#+RESULTS:
[[file:figs/int_non_linearity_period_wavelength.png]]
* Identification
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Load Data
#+begin_src matlab
load('mat/int_enc_id_noise_bis.mat', 'interferometer', 'encoder', 'u', 't');
#+end_src
#+begin_src matlab
interferometer = detrend(interferometer, 0);
encoder = detrend(encoder, 0);
u = detrend(u, 0);
#+end_src
** Identification
#+begin_src matlab
Ts = 1e-4; % Sampling Time [s]
win = hann(ceil(10/Ts));
#+end_src
#+begin_src matlab
[tf_i_est, f] = tfestimate(u, interferometer, win, [], [], 1/Ts);
[co_i_est, ~] = mscohere(u, interferometer, win, [], [], 1/Ts);
[tf_e_est, ~] = tfestimate(u, encoder, win, [], [], 1/Ts);
[co_e_est, ~] = mscohere(u, encoder, win, [], [], 1/Ts);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, co_i_est, '-')
plot(f, co_e_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([0.5, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/identification_dynamics_coherence.pdf', 'width', 'normal', 'height', 'normal');
#+end_src
#+name: fig:identification_dynamics_coherence
#+caption:
#+RESULTS:
[[file:figs/identification_dynamics_coherence.png]]
#+begin_src matlab :exports none
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(f, abs(tf_i_est), '-', 'DisplayName', 'Int')
plot(f, abs(tf_e_est), '-', 'DisplayName', 'Enc')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-7, 3e-4]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_i_est), '-')
plot(f, 180/pi*angle(tf_e_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
yticks(-360:90:360);
axis padded 'auto x'
linkaxes([ax1,ax2], 'x');
xlim([0.5, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/identification_dynamics_bode.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:identification_dynamics_bode
#+caption:
#+RESULTS:
[[file:figs/identification_dynamics_bode.png]]
* Change of Stiffness due to Sensors stack being open/closed circuit
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Load Data
#+begin_src matlab
oc = load('./mat/identification_open_circuit.mat', 't', 'encoder', 'u');
sc = load('./mat/identification_short_circuit.mat', 't', 'encoder', 'u');
#+end_src
** Transfer Functions
#+begin_src matlab
Ts = 1e-4; % Sampling Time [s]
win = hann(ceil(10/Ts));
#+end_src
#+begin_src matlab
[tf_oc_est, f] = tfestimate(oc.u, oc.encoder, win, [], [], 1/Ts);
[co_oc_est, ~] = mscohere( oc.u, oc.encoder, win, [], [], 1/Ts);
[tf_sc_est, ~] = tfestimate(sc.u, sc.encoder, win, [], [], 1/Ts);
[co_sc_est, ~] = mscohere( sc.u, sc.encoder, win, [], [], 1/Ts);
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(f, co_oc_est, '-')
plot(f, co_sc_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([0.5, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stiffness_force_sensor_coherence.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:stiffness_force_sensor_coherence
#+caption:
#+RESULTS:
[[file:figs/stiffness_force_sensor_coherence.png]]
#+begin_src matlab :exports none
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(f, abs(tf_oc_est), '-', 'DisplayName', 'Open-Circuit')
plot(f, abs(tf_sc_est), '-', 'DisplayName', 'Short-Circuit')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-7, 3e-4]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_oc_est), '-')
plot(f, 180/pi*angle(tf_sc_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
yticks(-360:90:360);
axis padded 'auto x'
linkaxes([ax1,ax2], 'x');
xlim([0.5, 5e3]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stiffness_force_sensor_bode.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stiffness_force_sensor_bode
#+caption:
#+RESULTS:
[[file:figs/stiffness_force_sensor_bode.png]]
#+begin_src matlab :tangle no :exports results :results file replace
xlim([180, 280]);
exportFig('figs/stiffness_force_sensor_bode_zoom.pdf', 'width', 'small', 'height', 'tall');
#+end_src
#+name: fig:stiffness_force_sensor_bode_zoom
#+caption: Zoom on the change of resonance
#+RESULTS:
[[file:figs/stiffness_force_sensor_bode_zoom.png]]
#+begin_important
The change of resonance frequency / stiffness is very small and is not important here.
#+end_important
* Generated Number of Charge / Voltage
** Introduction :ignore:
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
The amplifier gain is 20V/V (Cedrat LA75B).
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<>
#+end_src
** Steps
#+begin_src matlab
load('./mat/force_sensor_steps.mat', 't', 'encoder', 'u', 'v');
#+end_src
#+begin_src matlab
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
nexttile;
plot(t, v);
xlabel('Time [s]'); ylabel('Measured voltage [V]');
nexttile;
plot(t, u);
xlabel('Time [s]'); ylabel('Actuator Voltage [V]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sen_steps_time_domain.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:force_sen_steps_time_domain
#+caption: Time domain signal during the 3 actuator voltage steps
#+RESULTS:
[[file:figs/force_sen_steps_time_domain.png]]
Three steps are performed at the following time intervals:
- 2.5, 23
- 23.8, 35
- 35.8, 50
Fit function:
#+begin_src matlab
f = @(b,x) b(1).*exp(b(2).*x) + b(3);
#+end_src
We are interested by the =b(2)= term, which is the time constant of the exponential.
#+begin_src matlab
tau = zeros(3,1);
V0 = zeros(3,1);
#+end_src
#+begin_src matlab
t_cur = t(2.5 < t & t < 23);
t_cur = t_cur - t_cur(1);
y_cur = v(2.5 < t & t < 23);
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
tau(1) = 1/B(2);
V0(1) = B(3);
#+end_src
#+begin_src matlab
t_cur = t(23.8 < t & t < 35);
t_cur = t_cur - t_cur(1);
y_cur = v(23.8 < t & t < 35);
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
tau(2) = 1/B(2);
V0(2) = B(3);
#+end_src
#+begin_src matlab
t_cur = t(35.8 < t);
t_cur = t_cur - t_cur(1);
y_cur = v(35.8 < t);
nrmrsd = @(b) norm(y_cur - f(b,t_cur)); % Residual Norm Cost Function
B0 = [0.5, -0.15, 2.2]; % Choose Appropriate Initial Estimates
[B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’
tau(3) = 1/B(2);
V0(3) = B(3);
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([abs(tau), V0], {}, {'$tau$ [s]', '$V_0$ [V]'}, ' %.2f ');
#+end_src
#+RESULTS:
| $tau$ [s] | $V_0$ [V] |
|-----------+-----------|
| 6.47 | 2.26 |
| 6.76 | 2.26 |
| 6.49 | 2.25 |
With the capacitance being $C = 4.4 \mu F$, the internal impedance of the Speedgoat ADC can be computed as follows:
#+begin_src matlab
Cp = 4.4e-6; % [F]
Rin = abs(mean(tau))/Cp;
#+end_src
#+begin_src matlab :results value replace :exports results
ans = Rin
#+end_src
#+RESULTS:
: 1494100.0
The input impedance of the Speedgoat's ADC should then be close to $1.5\,M\Omega$ (specified at $1\,M\Omega$).
#+begin_important
How can we explain the voltage offset?
#+end_important
As shown in Figure [[fig:piezo_sensor_model_instrumentation]] (taken from cite:reza06_piezoel_trans_vibrat_contr_dampin), an input voltage offset is due to the input bias current $i_n$.
#+name: fig:piezo_sensor_model_instrumentation
#+caption: Model of a piezoelectric transducer (left) and instrumentation amplifier (right)
[[file:figs/piezo_sensor_model_instrumentation.png]]
The estimated input bias current is then:
#+begin_src matlab
in = mean(V0)/Rin;
#+end_src
#+begin_src matlab :results value replace :exports results
ans = in
#+end_src
#+RESULTS:
: 1.5119e-06
An additional resistor in parallel with $R_{in}$ would have two effects:
- reduce the input voltage offset
\[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]
- increase the high pass corner frequency $f_c$
\[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]
If we allow the high pass corner frequency to be equals to 3Hz:
#+begin_src matlab
fc = 3;
Ra = Rin/(fc*C*Rin - 1);
#+end_src
#+begin_src matlab :results value replace :exports results
ans = Ra
#+end_src
#+RESULTS:
: 79804
With this parallel resistance value, the voltage offset would be:
#+begin_src matlab
V_offset = Ra*Rin/(Ra + Rin) * in;
#+end_src
#+begin_src matlab :results value replace :exports results
ans = V_offset
#+end_src
#+RESULTS:
: 0.11454
Which is much more acceptable.
** Sinus
#+begin_src matlab
load('./mat/force_sensor_sin.mat', 't', 'encoder', 'u', 'v');
u = u(t>25);
v = v(t>25);
encoder = encoder(t>25) - mean(encoder(t>25));
t = t(t>25);
#+end_src
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure [[fig:force_sensor_sin_u]]).
#+begin_src matlab :exports none
figure;
plot(t, u)
xlabel('Time [s]'); ylabel('Control Voltage [V]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sensor_sin_u.pdf', 'width', 'normal', 'height', 'small');
#+end_src
#+name: fig:force_sensor_sin_u
#+caption: Driving Voltage
#+RESULTS:
[[file:figs/force_sensor_sin_u.png]]
The full stroke as measured by the encoder is:
#+begin_src matlab :results value replace
max(encoder)-min(encoder)
#+end_src
#+RESULTS:
: 5.005e-05
Its signal is shown in Figure [[fig:force_sensor_sin_encoder]].
#+begin_src matlab :exports none
figure;
plot(t, encoder)
xlabel('Time [s]'); ylabel('Encoder [m]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sensor_sin_encoder.pdf', 'width', 'normal', 'height', 'small');
#+end_src
#+name: fig:force_sensor_sin_encoder
#+caption: Encoder measurement
#+RESULTS:
[[file:figs/force_sensor_sin_encoder.png]]
The generated voltage by the stack is shown in Figure
#+begin_src matlab :exports none
figure;
plot(t, v)
xlabel('Time [s]'); ylabel('Force Sensor Output [V]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sensor_sin_stack.pdf', 'width', 'normal', 'height', 'small');
#+end_src
#+name: fig:force_sensor_sin_stack
#+caption: Voltage measured on the stack used as a sensor
#+RESULTS:
[[file:figs/force_sensor_sin_stack.png]]
The capacitance of the stack is
#+begin_src matlab
Cp = 4.4e-6; % [F]
#+end_src
The corresponding generated charge is then shown in Figure [[fig:force_sensor_sin_charge]].
#+begin_src matlab :exports none
figure;
plot(t, 1e6*Cp*(v-mean(v)))
xlabel('Time [s]'); ylabel('Generated Charge [$\mu C$]');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sensor_sin_charge.pdf', 'width', 'normal', 'height', 'small');
#+end_src
#+name: fig:force_sensor_sin_charge
#+caption: Generated Charge
#+RESULTS:
[[file:figs/force_sensor_sin_charge.png]]
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure [[fig:force_sensor_linear_relation]].
#+begin_src matlab
b1 = encoder\(v-mean(v));
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(encoder, v-mean(v), 'DisplayName', 'Measured Voltage');
plot(encoder, encoder*b1, 'DisplayName', sprintf('Linear Fit: $U_s \\approx %.3f [V/\\mu m] \\cdot d$', 1e-6*abs(b1)));
hold off;
xlabel('Measured Displacement [m]'); ylabel('Generated Voltage [V]');
legend();
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/force_sensor_linear_relation.pdf', 'width', 'normal', 'height', 'small');
#+end_src
#+name: fig:force_sensor_linear_relation
#+caption: Almost linear relation between the relative displacement and the generated voltage
#+RESULTS:
[[file:figs/force_sensor_linear_relation.png]]
With a 16bits ADC, the resolution will then be equals to (in [nm]):
#+begin_src matlab :results value replace
abs((20/2^16)/(b1/1e9))
#+end_src
#+RESULTS:
: 3.9838