+++ title = "Position Sensors" author = ["Thomas Dehaeze"] draft = false +++ Tags : [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}) ## Absolute Position Sensors {#absolute-position-sensors} - Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement (Collette {\it et al.}, 2012) - Collette, C. et al., Comparison of new absolute displacement sensors (Collette {\it et al.}, 2012) {{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}} ## Relative Position Sensors {#relative-position-sensors} - Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (Andrew Fleming, 2013) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
Table 1: Characteristics of relative measurement sensors collette11_review
| Technology | Frequency | Resolution | Range | T Range | |----------------|------------|----------------|--------------|-------------| | LVDT | DC-200 Hz | 10 nm rms | 1-10 mm | -50,100 °C | | Eddy current | 5 kHz | 0.1-100 nm rms | 0.5-55 mm | -50,100 °C | | Capacitive | DC-100 kHz | 0.05-50 nm rms | 50 nm - 1 cm | -40,100 °C | | Interferometer | 300 kHz | 0.1 nm rms | 10 cm | -250,100 °C | | Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C | | Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
Table 2: Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100 \mu m\) and a first order bandwidth of \(1 kHz\) fleming13_review_nanom_resol_posit_sensor
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy | |----------------|--------------------------------|---------|------------|----------|-----------| | Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR | | Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR | | Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR | | Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR | | Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR | | LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR | | Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR | | Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR | ### Strain Gauge {#strain-gauge} ### Capacitive Sensor {#capacitive-sensor} Description: - - | | | |----------------|-------------------------------------------------------------------------------------------------| | Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | | Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | | PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | | Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | | Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | ### Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current} | | | |----------------|------------------------------------------------------------------------------------------| | Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | | Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | ### Inductive Sensor (LVDT) {#inductive-sensor--lvdt} | | | |---------------|--------------------------------------------------------------------------------------------| | Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | | Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | ### Interferometers {#interferometers} | | | |----------|----------------------------------------------------------------------------------------------------------| | Attocube | [link](http://www.attocube.com/) | | Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | | Smaract | [link](https://www.smaract.com/interferometry) | | Qutools | [link](https://www.qutools.com/qudis/) | | Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | | Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | | Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) |
Table 3: Characteristics of Environmental Units
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) | |-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------| | Attocube | 0.1 | 1 | 2 | 0.5 | | Renishaw | 0.2 | 1 | 6 | 1 | | Picoscale | 0.2 | 2 | 2 | 1 | (Yoon-Soo Jang \& Seung-Woo Kim, 2017) {{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 2: Expected precision of interferometer as a function of measured distance" >}} ### Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor} | | | |----------|----------------------------------------------------| | Unipulse | [link](https://www.unipulse.com/product/atw200-2/) | # Bibliography Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 1289–1300 (2012). http://dx.doi.org/10.1785/0120110223 [↩](#dd5109075933cf543c7eba0979c0ba50) Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, *Comparison of new absolute displacement sensors*, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : . [↩](#0b0b67de6dddc4d28031ab2d3b28cd3d) Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106–126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016 [↩](#3fb5b61524290e36d639a4fac65703d0) Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011). [↩](#642a18d86de4e062c6afb0f5f20501c4) Jang, Y., & Kim, S., *Compensation of the refractive index of air in laser interferometer for distance measurement: a review*, International Journal of Precision Engineering and Manufacturing, *18(12)*, 1881–1890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y [↩](#7658b1219a4458a62ae8c6f51b767542) ## Backlinks {#backlinks} - [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}) - [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}}) - [Inertial Sensors]({{< relref "inertial_sensors" >}})