+++ title = "Systems and Signals Norms" author = ["Thomas Dehaeze"] draft = false +++ ### Backlinks {#backlinks} - [Multivariable Control]({{< relref "multivariable_control" >}}) Tags : Resources: - ([Skogestad and Postlethwaite 2007](#org533c8de)) - ([Toivonen 2002](#orgb393f10)) - ([Zhang 2011](#org1ea8e81)) ## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm} SISO Systems => absolute value => bode plot MIMO Systems => singular value Signal ## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm} RMS value The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}). As explained in ([Monkhorst 2004](#org5e40c21)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation: > The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input. ## Link between signal and system norms {#link-between-signal-and-system-norms} ## Bibliography {#bibliography} Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University. Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley. Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University. Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.