+++ title = "Mass Spring Damper Systems" author = ["Thomas Dehaeze"] draft = false +++ Tags : ## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system} Let's consider Figure [1](#orga358a0b) where: - \\(m\\) is the mass in [kg] - \\(ḱ\\) is the spring stiffness in [N/m] - \\(c\\) is the damping coefficient in [N/(m/s)] - \\(F\\) is the actuator force in [N] - \\(F\_d\\) is external force applied to the mass in [N] - \\(w\\) is ground motion - \\(x\\) is the absolute mass motion {{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}} Let's write the transfer function from \\(F\\) to \\(x\\): \begin{equation} \frac{x}{F}(s) = \frac{1}{m s^2 + c s + k} \end{equation} This can be re-written as: \begin{equation} \frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} with: - \\(\omega\_0\\) the natural frequency in [rad/s] - \\(\xi\\) the damping ratio ## Transmissibility {#transmissibility} \begin{equation} \frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} ## Compliance {#compliance} \begin{equation} \frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation}