+++ title = "Systems and Signals Norms" author = ["Thomas Dehaeze"] draft = false +++ Tags : Resources: - (Skogestad \& Postlethwaite, 2007) - (Hannu Toivonen, 2002) - (Zhang, 2011) ## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm} SISO Systems => absolute value => bode plot MIMO Systems => singular value Signal ## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm} RMS value The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}). As explained in @phdthesis{monkhorst04_dynam_error_budget, author = {Wouter Monkhorst}, school = {Delft University}, title = {Dynamic Error Budgeting, a design approach}, year = 2004, }, the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation: > The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input. ## Link between signal and system norms {#link-between-signal-and-system-norms} # Bibliography Skogestad, S., & Postlethwaite, I., *Multivariable feedback control: analysis and design* (2007), : John Wiley. [↩](#ad6f62e369b7a8d31c21671886adec1f) Toivonen, H. T. (2002). *Robust Control Methods*. Retrieved from [](). . [↩](#90e96a2c8cdb40b7bdf895cf013c0946) Zhang, W., *Quantitative Process Control Theory* (2011), : CRC Press. [↩](#8db224194542fbd4c7f4fbe56fdd4e73) Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, . [↩](#651e626e040250ee71a0847aec41b60c) ## Backlinks {#backlinks} - [Multivariable Control]({{< relref "multivariable_control" >}})