+++
title = "Systems and Signals Norms"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
Resources:
- (Skogestad \& Postlethwaite, 2007)
- (Hannu Toivonen, 2002)
- (Zhang, 2011)
## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
SISO Systems => absolute value => bode plot
MIMO Systems => singular value
Signal
## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm}
RMS value
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
As explained in @phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}, the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
## Link between signal and system norms {#link-between-signal-and-system-norms}
# Bibliography
Skogestad, S., & Postlethwaite, I., *Multivariable feedback control: analysis and design* (2007), : John Wiley. [↩](#ad6f62e369b7a8d31c21671886adec1f)
Toivonen, H. T. (2002). *Robust Control Methods*. Retrieved from [](). . [↩](#90e96a2c8cdb40b7bdf895cf013c0946)
Zhang, W., *Quantitative Process Control Theory* (2011), : CRC Press. [↩](#8db224194542fbd4c7f4fbe56fdd4e73)
Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, . [↩](#651e626e040250ee71a0847aec41b60c)
## Backlinks {#backlinks}
- [Multivariable Control]({{< relref "multivariable_control" >}})